Satellite Communications Systems Engineering (eBook)
464 Seiten
Wiley (Verlag)
978-1-119-25938-1 (ISBN)
The first edition of Satellite Communications Systems Engineering (Wiley 2008) was written for those concerned with the design and performance of satellite communications systems employed in fixed point to point, broadcasting, mobile, radio navigation, data relay, computer communications, and related satellite based applications. This welcome Second Edition continues the basic premise and enhances the publication with the latest updated information and new technologies developed since the publication of the first edition. The book is based on graduate level satellite communications course material and has served as the primary text for electrical engineering Masters and Doctoral level courses in satellite communications and related areas. Introductory to advanced engineering level students in electrical, communications and wireless network courses, and electrical engineers, communications engineers, systems engineers, and wireless network engineers looking for a refresher will find this essential text invaluable.
LOUIS J. IPPOLITO JR., Engineering Consultant and Adjunct Professor, The George Washington University, Washington DC, USA.
LOUIS J. IPPOLITO JR., Engineering Consultant and Adjunct Professor, The George Washington University, Washington DC, USA.
Cover 1
Title Page 5
Copyright 6
Contents 7
List of Acronyms 15
Preface to Second Edition 21
Chapter 1 Introduction to Satellite Communications 23
1.1 Early History of Satellite Communications 25
1.1.1 SCORE 25
1.1.2 ECHO 25
1.1.3 COURIER 26
1.1.4 WESTFORD 26
1.1.5 TELSTAR 26
1.1.6 RELAY 26
1.1.7 SYNCOM 27
1.1.8 EARLYBIRD 27
1.1.9 APPLICATIONS TECHNOLOGY SATELLITE-1, ATS-1 27
1.1.10 ATS-3 27
1.1.11 ATS-5 28
1.1.12 ANIK A 28
1.1.13 ATS-6 28
1.1.14 CTS 30
1.2 Some Basic Communications Satellite System Definitions 31
1.2.1 Satellite Communications Segments 31
1.2.1.1 Space Segment 31
1.2.1.2 Ground Segment 31
1.2.2 Satellite Link Parameters 32
1.2.3 Satellite Orbits 33
1.2.3.1 Geosynchronous Orbit (GSO or GEO) 33
1.2.3.2 Low Earth Orbit (LEO) 34
1.2.3.3 Medium Earth Orbit (MEO) 34
1.2.3.4 High Earth Orbit (HEO) 34
1.2.4 Frequency Band Designations 35
1.3 Overview of Book Structure and Topics 35
References 37
Chapter 2 Satellite Orbits 39
2.1 Kepler's Laws 40
2.2 Orbital Parameters 41
2.3 Orbits in Common Use 44
2.3.1 Geostationary Orbit 45
2.3.2 Low Earth Orbit 47
2.3.3 Medium Earth Orbit 48
2.3.4 Highly Elliptical Orbit 48
2.3.5 Polar Orbit 49
2.4 Geometry of GSO Links 49
2.4.1 Range to Satellite 51
2.4.2 Elevation Angle to Satellite 51
2.4.3 Azimuth Angle to Satellite 52
2.4.4 Sample Calculation 53
References 55
Problems 55
Chapter 3 Satellite Subsystems 57
3.1 Satellite Bus 58
3.1.1 Physical Structure 59
3.1.1.1 Spin Stabilization 59
3.1.1.2 Three-Axis Stabilization 60
3.1.2 Power Subsystem 60
3.1.3 Attitude Control 61
3.1.4 Orbital Control 61
3.1.5 Thermal Control 63
3.1.6 Electronic Propulsion Satellites 64
3.1.7 Tracking, Telemetry, Command, and Monitoring 65
3.2 Satellite Payload 67
3.2.1 Transponder 67
3.2.1.1 Frequency Translation Transponder 67
3.2.1.2 On-Board Processing Transponder 68
3.2.2 Antennas 69
References 70
Chapter 4 The RF Link 71
4.1 Transmission Fundamentals 71
4.1.1 Effective Isotropic Radiated Power 73
4.1.2 Power Flux Density 73
4.1.3 Antenna Gain 74
4.1.3.1 Circular Parabolic Reflector Antenna 75
4.1.3.2 Beamwidth 75
4.1.4 Free-Space Path Loss 77
4.1.5 Basic Link Equation for Received Power 78
4.1.5.1 Sample Calculation for Ku-Band Link 79
4.2 System Noise 81
4.2.1 Noise Figure 83
4.2.2 Noise Temperature 85
4.2.2.1 Active Devices 85
4.2.2.2 Passive Devices 86
4.2.2.3 Receiver Antenna Noise 87
4.2.3 System Noise Temperature 88
4.2.3.1 Sample Calculation for System Noise Temperature 90
4.2.4 Figure of Merit 91
4.3 Link Performance Parameters 92
4.3.1 Carrier-to-Noise Ratio 92
4.3.2 Carrier-to-Noise Density 94
4.3.3 Energy-per-Bit to Noise Density 94
Reference 95
Problems 95
Chapter 5 Link System Performance 97
5.1 Link Considerations 97
5.1.1 Fixed Antenna Size Link 98
5.1.2 Fixed Antenna Gain Link 99
5.1.3 Fixed Antenna Gain, Fixed Antenna Size Link 99
5.2 Uplink 101
5.2.1 Multiple Carrier Operation 103
5.3 Downlink 103
5.4 Percent of Time Performance Specifications 104
References 106
Problems 107
Chapter 6 Transmission Impairments 109
6.1 Radiowave Frequency and Space Communications 109
6.2 Radiowave Propagation Mechanisms 111
6.2.1 Absorption 112
6.2.2 Scattering 112
6.2.3 Refraction 112
6.2.4 Diffraction 112
6.2.5 Multipath 112
6.2.6 Scintillation 112
6.2.7 Fading 112
6.2.8 Frequency Dispersion 112
6.3 Propagation Below About 3 GHz 114
6.3.1 Ionospheric Scintillation 117
6.3.2 Polarization Rotation 119
6.3.3 Group Delay 120
6.3.4 Dispersion 121
6.4 Propagation Above About 3 GHz 122
6.4.1 Rain Attenuation 123
6.4.1.1 Spatial Structure of Rain 123
6.4.1.2 Classical Description for Rain Attenuation 124
6.4.1.3 Attenuation and Rain Rate 126
6.4.2 Gaseous Attenuation 127
6.4.3 Cloud and Fog Attenuation 129
6.4.3.1 Specific Attenuation for Clouds 129
6.4.3.2 Total Cloud Attenuation 130
6.4.4 Depolarization 130
6.4.4.1 Rain Depolarization 132
6.4.4.2 Ice Depolarization 135
6.4.5 Tropospheric Scintillation 136
6.4.5.1 Scintillation Parameters 138
6.4.5.2 Amplitude Scintillation Measurements 138
6.5 Radio Noise 139
6.5.1 Specification of Radio Noise 141
6.5.2 Noise From Atmospheric Gases 143
6.5.3 Sky Noise Due To Rain 146
6.5.4 Sky Noise Due to Clouds 147
6.5.5 Noise From Extra-Terrestrial Sources 148
6.5.5.1 Cosmic Background Noise 149
6.5.5.2 Solar Noise 153
6.5.5.3 Lunar Noise 155
6.5.5.4 Radio Stars 156
References 156
Problems 157
Chapter 7 Propagation Effects Modeling and Prediction 160
7.1 Atmospheric Gases 160
7.1.1 Leibe Complex Refractivity Model 161
7.1.2 ITU-R Gaseous Attenuation Models 162
7.1.2.1 ITU-R Line-by-line Calculation 162
7.1.2.2 ITU-R Gaseous Attenuation Approximation Method 167
7.2 Clouds and Fog 174
7.2.1 ITU-R Cloud Attenuation Model 175
7.2.2 Slobin Cloud Model 177
7.3 Rain Attenuation 184
7.3.1 ITU-R Rain Attenuation Model 184
7.3.2 Crane Rain Attenuation Models 198
7.3.2.1 Crane Global Rain Model 199
7.3.2.2 Crane Two Component Rain Attenuation Model 204
7.4 Depolarization 209
7.4.1 Rain Depolarization Modeling 210
7.4.1.1 ITU-R Depolarization Model 210
7.4.2 Ice Depolarization Modeling 212
7.4.2.1 Tsolakis and Stutzman T-Matrix Model 212
7.4.2.2 ITU-R Ice DepolarizationEstimation 215
7.5 Tropospheric Scintillation 216
7.5.1 Karasawa Scintillation Model 216
7.5.2 ITU-R Scintillation Model 219
7.5.3 van de Camp Cloud Scintillation Model 221
References 223
Problems 225
Chapter 8 Rain Fade Mitigation 227
8.1 Power Restoral Techniques 227
8.1.1 Beam Diversity 228
8.1.2 Power Control 229
8.1.2.1 Uplink Power Control 230
8.1.2.2 Downlink Power Control 233
8.1.3 Site Diversity 233
8.1.3.1 Diversity Gain and Diversity Improvement 234
8.1.3.2 Diversity System Design and Performance 239
8.1.3.3 Site Diversity Processing 246
8.1.3.4 Considerations When Modeling Site Diversity 247
8.1.4 Orbit Diversity 249
8.2 Signal Modification Restoral Techniques 251
8.2.1 Frequency Diversity 252
8.2.2 Bandwidth Reduction 253
8.2.3 Time-Delayed Transmission Diversity 253
8.2.4 Adaptive Coding and Modulation 253
8.3 Summary 254
References 254
Problems 255
Chapter 9 The Composite Link 257
9.1 Frequency Translation (FT) Satellite 258
9.1.1 Uplink 258
9.1.2 Downlink 260
9.1.3 Composite Carrier-to-Noise Ratio 260
9.1.3.1 Carrier-to-Noise Density 264
9.1.3.2 Energy-Per-Bit to Noise Density Ratio 264
9.1.4 Performance Implications 265
9.1.5 Path Losses and Link Performance 266
9.2 On-Board Processing (OBP) Satellite 270
9.2.1 OBP Uplink and Downlink 272
9.2.2 Composite OBP Performance 272
9.2.2.1 Binary FSK Link 273
9.3 Comparison of FT and OBP Performance 274
9.4 Intermodulation Noise 277
9.5 Link Design Summary 279
References 280
Problems 280
Chapter 10 Satellite Communications Signal Processing 283
10.1 Analog Systems 283
10.1.1 Analog Baseband Formatting 284
10.1.2 Analog Source Combining 286
10.1.3 Analog Modulation 286
10.2 Digital Baseband Formatting 292
10.2.1 PCM Bandwidth Requirements 295
10.2.2 Nearly Instantaneous Companding (NIC) 295
10.2.3 Adaptive Delta Modulation (ADM) or Continuously Variable Slope Delta Modulation (CVSD) 295
10.2.4 Adaptive Differential PCM (ADPCM) 296
10.3 Digital Source Combining 296
10.4 Digital Carrier Modulation 297
10.4.1 Binary Phase Shift Keying 300
10.4.2 Quadrature Phase Shift Keying 302
10.4.3 Higher Order Phase Modulation 305
10.5 Summary 305
Reference 306
Problems 306
Chapter 11 Satellite Multiple Access 308
11.1 Frequency Division Multiple Access 311
11.1.1 PCM/TDM/PSK/FDMA 312
11.1.2 PCM/SCPC/PSK/FDMA 314
11.2 Time Division Multiple Access 315
11.2.1 PCM/TDM/PSK/TDMA 316
11.2.2 TDMA Frame Efficiency 317
11.2.2.1 Sample Calculation for Frame Efficiency 318
11.2.3 TDMA Capacity 318
11.2.3.1 Sample Calculation for Channel Capacity 320
11.2.4 Satellite Switched TDMA 321
11.3 Code Division Multiple Access 325
11.3.1 Direct Sequence Spread Spectrum 328
11.3.2 Frequency Hopping Spread Spectrum 331
11.3.3 CDMA Processing Gain 332
11.3.4 CDMA Capacity 334
11.3.4.1 Sample Calculation for the CDMA Channel Capacity 335
References 336
Problems 336
Chapter 12 The Mobile Satellite Channel 338
12.1 Mobile Channel Propagation 338
12.1.1 Reflection 339
12.1.2 Diffraction 340
12.1.3 Scattering 340
12.2 Narrowband Channel 343
12.2.1 Path Loss Factor 345
12.2.2 Shadow Fading 349
12.2.2.1 Empirical Roadside Shadowing Model 350
12.2.2.2 ITU-R Roadside Building Shadowing Model 353
12.2.3 Multipath Fading 355
12.2.3.1 Mountain Environment Multipath Model 360
12.2.3.2 Roadside Trees Multipath Model 361
12.2.4 Blockage 362
12.2.4.1 ITU-R Building Blockage Model 362
12.2.4.2 Hand Held Terminal Blockage 366
12.2.5 Mixed Propagation Conditions 368
12.3 Wideband Channel 370
12.4 Multi-Satellite Mobile Links 373
12.4.1 Uncorrelated Fading 373
12.4.1.1 Multi-Satellite GSO Network 373
12.4.1.2 Multi-Satellite NGSO Network 374
12.4.2 Correlated Fading 375
References 377
Chapter 13 Spectrum Management in Satellite Communications 379
13.1 Spectrum Management Functions and Activities 379
13.1.1 International Spectrum Management 380
13.1.2 World Radiocommunication Conference (WRC) 383
13.1.3 Frequency Allocation Process 383
13.1.4 Spectrum Management in the United States 387
13.1.4.1 Federal Communications Commission (FCC) 388
13.1.4.2 National Telecommunications and Information Administration (NTIA) 388
13.1.4.3 FCC and NTIA Duel Organization Structure 389
13.2 Methods of Radio Spectrum Sharing 390
13.2.1 Frequency Separation 391
13.2.2 Spatial Separation 393
13.2.3 Time Separation 394
13.2.4 Signal Separation 394
13.3 Spectrum Efficiency Metrics 394
13.3.1 Spectrum Utilization Factor (U) 395
13.3.2 Spectrum Utilization Efficiency (SUE) 395
References 396
Problems 396
Chapter 14 Interference Mitigation in Satellite Communications 398
14.1 Interference Designations 398
14.2 Modes of Interference for Satellite Services Networks 399
14.2.1 Interference Between Space and Terrestrial Services Systems 399
14.2.2 Interference Between Space Services Networks 400
14.2.3 Interference Between Space Services Networks with Reverse Band Allocations 401
14.3 Interference Propagation Mechanisms 401
14.3.1 Line-of-Sight Interference 403
14.3.2 Diffraction 404
14.3.3 Tropospheric Scatter 405
14.3.4 Surface Ducting and Layer Reflection 405
14.3.5 Hydrometeor (Rain) Scatter 406
14.4 Interference and the RF Link 408
14.4.1 Single Interferer (pfd) 409
14.4.2 Multiple Interferers (epfd) 409
14.5 Coordination for Interference Mitigation 410
14.5.1 Radio-Climate Zones 412
14.5.2 Distance Limits 413
14.5.3 Coordination Distance for Mode (1) Propagation 414
14.5.4 Coordination Distance for Mode (2) Propagation 415
14.5.5 ITU-R Coordination Procedures for Satellite and Terrestrial Services 416
References 417
Problems 418
Chapter 15 High Throughput Satellites 420
15.1 Evolution of Satellite Broadband 421
15.2 Multiple Beam Antennas and Frequency Reuse 423
15.2.1 Multiple Beam Antenna Array Design 424
15.2.1.1 Total Available Bandwidth 426
15.2.1.2 Frequency Reuse Factor 426
15.2.1.3 Capacity 426
15.2.2 Adjacent Beam SIR 428
15.3 HTS Ground Systems Infrastructure 434
15.3.1 Network Architectures 434
15.3.1.1 STAR Network 434
15.3.1.2 MESH Network 435
15.3.2 Frequency Band Options 435
15.4 Satellite HTS and 5G 438
15.4.1 Cellular Mobile Technology Development 438
15.4.1.1 First Generation 438
15.4.1.2 Second Generation (2G) 439
15.4.1.3 Third Generation (3G) 439
15.4.1.4 3G Evolution 439
15.4.1.5 Fourth Generation (4G) 440
15.4.1.6 Fifth Generation (5G) 440
15.4.2 Satellite 5G Technologies 440
References 444
Appendix : Error Functions and Bit Error Rate 445
A.1 Error Functions 445
A.2 Approximation for BER 447
Index 449
EULA 463
| Erscheint lt. Verlag | 28.2.2017 |
|---|---|
| Sprache | englisch |
| Themenwelt | Technik ► Elektrotechnik / Energietechnik |
| Technik ► Nachrichtentechnik | |
| Schlagworte | Communication technology • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Kommunikationstechnik • Satellite communications • satellite communications, satellites, design, systems engineering, telecommunications, anntennas, propagation • Satellitenkommunikation • Systems Engineering & Management • Systemtechnik u. -management |
| ISBN-10 | 1-119-25938-X / 111925938X |
| ISBN-13 | 978-1-119-25938-1 / 9781119259381 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich