Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Fundamentals of Heat and Mass Transfer, Eigth Edition Loose-leaf Print Companion - Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt

Fundamentals of Heat and Mass Transfer, Eigth Edition Loose-leaf Print Companion

Loseblattwerk
992 Seiten
2017 | 8th Revised edition
John Wiley & Sons Inc (Verlag)
978-1-119-33010-3 (ISBN)
CHF 197,35 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken

Chapter 1 Introduction 1

1.1 What and How? 2

1.2 Physical Origins and Rate Equations 3

1.3 Relationship to Thermodynamics 12

1.4 Units and Dimensions 33

1.5 Analysis of Heat Transfer Problems: Methodology 35

1.6 Relevance of Heat Transfer 38

1.7 Summary 42

References 45

Problems 45

Chapter 2 Introduction to Conduction 59

2.1 The Conduction Rate Equation 60

2.2 The Thermal Properties of Matter 62

2.3 The Heat Diffusion Equation 74

2.4 Boundary and Initial Conditions 82

2.5 Summary 86

References 87

Problems 87

Chapter 3 One-Dimensional, Steady-State Conduction 99

3.1 The Plane Wall 100

3.2 An Alternative Conduction Analysis 121

3.3 Radial Systems 125

3.4 Summary of One-Dimensional Conduction Results 131

3.5 Conduction with Thermal Energy Generation 131

3.6 Heat Transfer from Extended Surfaces 143

3.7 Other Applications of One-Dimensional, Steady-State Conduction 163

3.8 Summary 179

References 181

Problems 182

Chapter 4 Two-Dimensional, Steady-State Conduction 209

4.1 General Considerations and Solution Techniques 210

4.2 The Method of Separation of Variables 211

4.3 The Conduction Shape Factor and the Dimensionless Conduction Heat Rate 215

4.4 Finite-Difference Equations 221

4.5 Solving the Finite-Difference Equations 230

4.6 Summary 236

References 237

Problems 237

4S.1 The Graphical Method W-1

4S.2 The Gauss-Seidel Method: Example of Usage W-5

References W-10

Problems W-10

Chapter 5 Transient Conduction 253

5.1 The Lumped Capacitance Method 254

5.2 Validity of the Lumped Capacitance Method 257

5.3 General Lumped Capacitance Analysis 261

5.4 Spatial Effects 272

5.5 The Plane Wall with Convection 273

5.6 Radial Systems with Convection 277

5.7 The Semi-Infinite Solid 284

5.8 Objects with Constant Surface Temperatures or Surface Heat Fluxes 291

5.9 Periodic Heating 301

5.10 Finite-Difference Methods 304

5.11 Summary 318

References 319

Problems 319

5S.1 Graphical Representation of One-Dimensional, Transient Conduction in the Plane Wall, Long Cylinder, and Sphere W-12

5S.2 Analytical Solutions of Multidimensional Effects W-16

References W-22

Problems W-22

Chapter 6 Introduction to Convection 341

6.1 The Convection Boundary Layers 342

6.2 Local and Average Convection Coefficients 346

6.3 Laminar and Turbulent Flow 353

6.4 The Boundary Layer Equations 358

6.5 Boundary Layer Similarity: The Normalized Boundary Layer Equations 362

6.6 Physical Interpretation of the Dimensionless Parameters 372

6.7 Boundary Layer Analogies 374

6.8 Summary 382

References 383

Problems 384

6S.1 Derivation of the Convection Transfer Equations W-25

References W-36

Problems W-36

Chapter 7 External Flow 395

7.1 The Empirical Method 397

7.2 The Flat Plate in Parallel Flow 398

7.3 Methodology for a Convection Calculation 409

7.4 The Cylinder in Cross Flow 417

7.5 The Sphere 427

7.6 Flow Across Banks of Tubes 430

7.7 Impinging Jets 439

7.8 Packed Beds 444

7.9 Summary 445

References 448

Problems 448

Chapter 8 Internal Flow 469

8.1 Hydrodynamic Considerations 470

8.2 Thermal Considerations 475

8.3 The Energy Balance 481

8.4 Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations 489

8.5 Convection Correlations: Turbulent Flow in Circular Tubes 496

8.6 Convection Correlations: Noncircular Tubes and the Concentric Tube Annulus 504

8.7 Heat Transfer Enhancement 507

8.8 Forced Convection in Small Channels 510

8.9 Convection Mass Transfer 515

8.10 Summary 517

References 520

Problems 521

Chapter 9 Free Convection 539

9.1 Physical Considerations 540

9.2 The Governing Equations for Laminar Boundary Layers 542

9.3 Similarity Considerations 544

9.4 Laminar Free Convection on a Vertical Surface 545

9.5 The Effects of Turbulence 548

9.6 Empirical Correlations: External Free Convection Flows 550

9.7 Free Convection Within Parallel Plate Channels 564

9.8 Empirical Correlations: Enclosures 567

9.9 Combined Free and Forced Convection 573

9.10 Convection Mass Transfer 574

9.11 Summary 575

References 576

Problems 577

Chapter 10 Boiling and Condensation 595

10.1 Dimensionless Parameters in Boiling and Condensation 596

10.2 Boiling Modes 597

10.3 Pool Boiling 598

10.4 Pool Boiling Correlations 602

10.5 Forced Convection Boiling 611

10.6 Condensation: Physical Mechanisms 615

10.7 Laminar Film Condensation on a Vertical Plate 617

10.8 Turbulent Film Condensation 621

10.9 Film Condensation on Radial Systems 626

10.10 Condensation in Horizontal Tubes 631

10.11 Dropwise Condensation 632

10.12 Summary 633

References 633

Problems 635

Chapter 11 Heat Exchangers 645

11.1 Heat Exchanger Types 646

11.2 The Overall Heat Transfer Coefficient 648

11.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference 651

11.4 Heat Exchanger Analysis: The Effectiveness–NTU Method 662

11.5 Heat Exchanger Design and Performance Calculations 670

11.6 Additional Considerations 679

11.7 Summary 687

References 688

Problems 688

11S.1 Log Mean Temperature Difference Method for Multipass and Cross-Flow Heat Exchangers W-40

11S.2 Compact Heat Exchangers W-44

References W-49

Problems W-50

Chapter 12 Radiation: Processes and Properties 701

12.1 Fundamental Concepts 702

12.2 Radiation Heat Fluxes 705

12.3 Radiation Intensity 707

12.4 Blackbody Radiation 716

12.5 Emission from Real Surfaces 726

12.6 Absorption, Reflection, and Transmission by Real Surfaces 735

12.7 Kirchhoff’s Law 744

12.8 The Gray Surface 746

12.9 Environmental Radiation 752

12.10 Summary 760

References 764

Problems 764

Chapter 13 Radiation Exchange Between Surfaces 785

13.1 The View Factor 786

13.2 Blackbody Radiation Exchange 796

13.3 Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure 800

13.4 Multimode Heat Transfer 817

13.5 Implications of the Simplifying Assumptions 820

13.6 Radiation Exchange with Participating Media 820

13.7 Summary 825

References 826

Problems 827

Chapter 14 Diffusion Mass Transfer 849

14.1 Physical Origins and Rate Equations 850

14.2 Mass Transfer in Nonstationary Media 855

14.3 The Stationary Medium Approximation 863

14.4 Conservation of Species for a Stationary Medium 863

14.5 Boundary Conditions and Discontinuous Concentrations at Interfaces 870

14.6 Mass Diffusion with Homogeneous Chemical Reactions 878

14.7 Transient Diffusion 881

14.8 Summary 887

References 888

Problems 888

Appendix A Thermophysical Properties of Matter 897

Appendix B Mathematical Relations and Functions 929

Appendix C Thermal Conditions Associated with Uniform Energy Generation in One-Dimensional, Steady-State Systems 935

Appendix D The Gauss–Seidel Method 941

Appendix E The Convection Transfer Equations 943

E.1 Conservation of Mass 944

E.2 Newton’s Second Law of Motion 944

E.3 Conservation of Energy 945

E.4 Conservation of Species 946

Appendix F Boundary Layer Equations for Turbulent Flow 947

Appendix G An Integral Laminar Boundary Layer Solution for Parallel Flow over a Flat Plate 951

Conversion Factors 955

Physical Constants 956

Index 957

Erscheinungsdatum
Verlagsort New York
Sprache englisch
Maße 200 x 255 mm
Gewicht 1499 g
Themenwelt Technik Maschinenbau
ISBN-10 1-119-33010-6 / 1119330106
ISBN-13 978-1-119-33010-3 / 9781119330103
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?