Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications (eBook)

Ajay Kumar Mishra (Herausgeber)

eBook Download: PDF
2016 | 1st ed. 2017
XV, 297 Seiten
Springer International Publishing (Verlag)
978-3-319-49512-5 (ISBN)

Lese- und Medienproben

Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications -
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book summarizes recent research and development in the field of nanostructured ceramics and their composites. It presents selected examples of ceramic materials with special electronic, catalytic and optical properties and exceptional mechanical characteristics. A special focus is on sol-gel based and organic-inorganic hybrid nanoceramic materials. The book highlights examples for preparation techniques including scale-up, properties of smart ceramic composites, and applications including e.g. waste water treatment, heavy metal removal, sensors, electronic devices and fuel cells. Recent challenges are addressed and potential solutions are suggested for these. This book hence addresses chemists, materials scientists, and engineers, working with nanoceramic materials and on their applications.

Preface 5
Contents 7
About the Editor 15
1 Nanoceramics: Fundamentals and Advanced Perspectives 16
Abstract 16
1.1 General Introduction to Nanomaterials 16
1.1.1 Introduction to Nanoceramics 17
1.2 Techniques to Develop Nanoceramics 18
1.2.1 Aqueous Sol–Gel Chemistry for the Synthesis of Nanoceramics 19
1.3 Recent Progress in the Field of Common and Advanced of Nanoceramics 20
1.3.1 Silicate-Based Nanoceramics 21
1.3.2 Zirconia-Based Nanoceramics 22
1.3.3 Titania-Based Nanoceramics 22
1.3.4 Borate-Based Nanoceramics 23
1.3.5 Silicon Carbide-Based Nanoceramics 24
1.3.6 Boron Carbide-Based Nanoceramics 24
1.4 Applications of Nanoceramics 25
1.4.1 Industrial Applications 25
1.4.2 Environmental Applications 27
1.4.3 Biomedical and Healthcare Applications 28
1.4.4 Defence and Space Applications 29
1.4.5 Strategic Applications 30
1.5 Future Scope of Nanoceramics 30
Acknowledgments 31
References 31
2 Advance Techniques for the Synthesis of Nanostructured Zirconia-Based Ceramics for Thermal Barrier Application 36
Abstract 36
2.1 Introduction 36
2.2 Zirconia Structure and Its Applications 37
2.2.1 Types of Stabilized Zirconia 39
2.2.1.1 Magnesia-Stabilized Zirconia 41
2.2.1.2 Calcia-Stabilized Zirconia (CaSZ) 50
2.2.1.3 Yttria Stabilized Zirconia (YSZ) 53
2.2.1.4 Ceria Stabilized Zirconia (ZrO2–CeO2 Solid Solution) 64
2.2.1.5 Ceria, Yttria Co-stabilized Zirconia (CYSZ) 70
2.2.1.6 Scandia, Yttria Co-stabilized Zirconia (ScYSZ) 76
2.2.1.7 Rare Earth Zirconates 88
2.2.1.8 Zirconia—Alumina Nanocomposite 92
2.3 Summary 98
References 98
3 Synthesis of Nanostructure Ceramics and Their Composites 107
Abstract 107
3.1 Introduction 107
3.2 Synthesis of Nanocomposite Ceramic Powders 108
3.2.1 Conventional Powder Method 109
3.2.2 Mechanochemical Synthesis 110
3.2.3 Polymer Precursor Route 111
3.2.4 Vapor-Phase Reaction Technique 112
3.2.5 Self-propagating High-Temperature Synthesis and Combustion Synthesis 113
3.2.6 Solution Based Techniques 115
3.2.6.1 Sol–Gel 115
3.2.6.2 Co-precipitation 117
3.2.6.3 Spray Decomposition 119
3.2.6.4 Solution Combustion 120
3.2.6.5 Surface Modification Methods 120
3.2.6.6 Industrial Production of Ceramic Composite Powders 122
3.3 Summary 123
3.4 Future Scenario 123
Acknowledgment 124
References 124
4 Structure, Stabilities, and Electronic Properties of Smart Ceramic Composites 127
Abstract 127
4.1 Introduction 127
4.2 Theoretical Methodology 129
4.2.1 First-Principles Total Energy Calculation 129
4.2.2 Formation Energy 130
4.2.3 Scanning Tunneling Microscopy Images 130
4.2.4 Computational Settings 130
4.3 Pristine h-BN Monolayer 131
4.3.1 Geometry and Energy Band Structure 131
4.3.2 Strain Effects and Electronic Properties 131
4.4 Carbon-Doped h-BN Monolayer 134
4.4.1 Atomic Structure and Energetics 134
4.4.2 Ionization Energy 134
4.4.3 Energy Band Structure 136
4.4.4 Work Function 138
4.4.5 Electronic State 139
4.4.6 Scanning Tunneling Microscopy Image 140
4.4.7 Total Charge Density 142
4.5 Summary 143
Acknowledgments 143
References 143
5 Advancement of Glass-Ceramic Materials for Photonic Applications 146
Abstract 146
5.1 Introduction 146
5.2 Transparent Glass-Ceramics and Their Application to Integrated and Fibre Optics 148
5.2.1 Optical Planar Waveguides 149
5.2.2 Glass-Ceramic Optical Fibres 150
5.3 Photoluminescence in Glass-Ceramics and Its Applications 151
5.3.1 Luminescence from RE-Activated Planar Waveguides 152
5.3.2 Active Glass-Ceramic Optical Fibres 152
5.4 Glass-Ceramics for Solar Cells 154
5.4.1 Solar Cells and Their Efficiencies 154
5.4.2 Luminescent Conversion Layers 156
5.4.3 Thermo-photovoltaics 159
5.5 Other Photonics Applications 160
5.5.1 Photonic Crystals 161
5.6 Summary and Outlook 163
Acknowledgments 164
References 165
6 Ceramic Nanocomposites for Solid Oxide Fuel Cells 169
Abstract 169
6.1 Introduction 170
6.2 Solid Oxide Fuel Cell (SOFC) 170
6.2.1 Fundamental Mechanism of SOFC 170
6.2.2 Type of SOFC 171
6.2.3 Components of a SOFC 172
6.3 Anode (Fuel Electrode) 172
6.3.1 Nickel (II) Oxide (NiO) 172
6.3.1.1 Properties of NiO 173
6.3.1.2 Synthesis of NiO 173
6.3.2 Nickel/Yittria Stabilized Zirconia (Ni/YSZ) Cermet Anode 174
6.3.2.1 Synthesis of Ni/YSZ Cermet Anode 175
6.3.2.2 Effect of Ni/YSZ Composition Ratio 176
6.3.2.3 Effect of Grain Size 177
6.3.3 Nickel/Gadolinium-Doped Ceria (Ni/GDC) Cermet Anode 178
6.3.3.1 Synthesis of Ni/GDC Cermet Anode 178
6.4 Electrolyte 179
6.4.1 Yttria Stabilized Zirconia (YSZ) 179
6.4.1.1 Properties of YSZ 179
Effect of Yttria Molarity on Grain Size 179
Effect of Sintering Temperature 179
6.4.1.2 Synthesis of YSZ 180
Hydrothermal Method 182
Sol–Gel Method 183
Electrospray Flame Synthesis Method 183
6.4.1.3 Other Materials 184
Zirconia-Based Electrolytes (Other Dopants) 184
Ceria-Based Electrolytes 184
Lanthanum Gallate-Based Electrolyte 185
6.5 Cathode (Air Electrode) 186
6.5.1 Strontium-Doped Lanthanum Manganite (LSM) 186
6.5.1.1 Synthesis of Strontium-Doped Lanthanum Manganite 186
6.5.1.2 Effect of Microstructural Properties of LSM Cathode and Electrochemical Performance 187
6.5.1.3 Effect of Variation on Sr Composition Ratio on LSM Powder 187
6.5.1.4 Effects of Modification of LSM Based Cathode 188
6.5.2 LSCF 188
6.5.2.1 LSCF Powder Synthesis Methods and Surface Properties 189
6.5.2.2 Effect of Compositional Ratio of LSCF on Cathodic Performance 189
6.5.2.3 Modifications of LSCF Based Cathode 189
6.6 Conclusion 190
References 192
7 A Review of Nanoceramic Materials for Use in Ceramic Matrix Composites 196
Abstract 196
7.1 Introduction 197
7.2 Ceramics 197
7.3 Ceramic Matrix Composites 197
7.3.1 Definition and Advantages 198
7.3.2 Types of CMC’s 199
7.3.3 Continuous Fiber-Reinforced 201
7.3.4 Parts of a CMC with Focus on Nanoceramics 201
7.3.5 Fibers 201
7.3.6 Oxides and Non-oxides 201
7.3.7 Brands, Diameters and Grain Sizes 202
7.3.8 Grain Size and Fiber Durability 203
7.3.9 Interfaces 204
7.4 CVD Application of BN/Graphite Interfaces 205
7.4.1 Matrices 206
7.4.2 PIP or CVI Matrices 206
7.4.3 Characterization of CMC’s 207
7.5 Application of CMC’s 209
7.5.1 Electronics 209
7.5.2 Heat Sinks 210
7.5.3 Aerospace and Aircraft 211
7.6 Background 211
7.6.1 History of CMC’s in Regard to Nanoceramics 211
7.6.2 Advancements in CVD 215
7.6.2.1 Fabrication of CVD/CVI Components 215
7.6.2.2 Advantages of CVD/CVI 215
7.6.3 Advancements in Preceramic Polymers 216
7.6.3.1 Production of Preceramic Polymers 216
7.6.3.2 Advantages of CVD/CVI 218
7.7 Nanoceramics in CMC’s 218
7.7.1 Fibers 219
7.7.1.1 Ceramic Materials (Alumina, SiC, Silica, Zirconia) 219
7.7.1.2 Preceramic Polymer Sources 220
7.7.1.3 Grain Growth and Control 221
7.7.1.4 Nanocrystalline Versus Amorphous, Advantages and Disadvantages 222
7.7.1.5 Analyses 223
7.7.2 Interfaces 224
7.7.2.1 Purpose, Mechanical Advantages 224
7.7.2.2 Boron Nitride, Graphite Solid-State Lubrication Properties with a Focus on Nanoceramics 225
7.7.2.3 LP-CVD Deposition of BN/ Graphite Interface 225
7.7.2.4 Advantages of CVD Interface 227
7.7.2.5 Non-CVD Interface (Sol–Gel), Focus on Nanoscale Grains 228
7.7.3 Matrices 230
7.7.3.1 Materials, Fillers, Grain Size and Importance 230
7.7.3.2 Fabrication of Matrices 231
7.7.3.3 Preventing Grain Growth 234
7.7.3.4 Effect of Grain Growth on Mechanical Properties 234
7.7.3.5 Sintering Agents Versus Grain Growth Inhibitors 235
7.8 Future Work in Nanoceramics and Nanocomposites 236
7.8.1 Other Applications 236
7.8.1.1 Electronics 236
7.8.1.2 Transistors 236
7.8.1.3 Biological 237
7.8.1.4 Others 238
Acknowledgments 239
References 239
8 Application of Hydroxyapatite-Based Nanoceramics in Wastewater Treatment: Synthesis, Characterization, and Optimization 242
Abstract 242
8.1 Introduction 242
8.2 Treatment Techniques for Pollutants-Laden Wastewater 244
8.2.1 Adsorption Phenomenon 246
8.2.2 Fenton-like Degradation 247
8.3 Synthesis Routes and Forms of Hydroxyapatite-Based Materials 248
8.3.1 Hydrothermal Technique 248
8.3.2 Precipitation Technique 249
8.3.3 Sol–Gel Approach 250
8.4 Hydroxyapatite-Based Nanoceramic Materials in Water Treatment 252
8.5 Parameters Influencing Pollutants Adsorption by Hydroxyapatite-Based Materials 256
8.5.1 Effect of Solution pH and Hap Morphologies 256
8.5.2 Effect of Ionic Strength 257
8.6 Fenton-like Degradation of Pollutants by Hydroxyapatite-Based Materials 259
8.7 Proposed Future Perspectives 259
8.8 Conclusions 260
Acknowledgments 260
References 261
9 Sol–Gel Derived Organic–Inorganic Hybrid Ceramic Materials for Heavy Metal Removal 263
Abstract 263
9.1 Introduction 264
9.2 Method for Sol–Gel Hybrid Materials Preparation 265
9.2.1 Basics of the Sol–Gel Reactions 265
9.2.2 Application of Nonfunctional Silica Precursors 267
9.2.3 Application of Functional Organosilanes as a Silica Precursor 272
9.3 Removal of Heavy Metal Ions by Organic–Inorganic Hybrid Materials 276
9.3.1 Heavy Metal Ions Removal on Silica–Chitosan Hybrid Materials 277
9.3.2 Heavy Metal Ions Removal on Clay and Zeolite Chitosan Hybrid Materials 280
9.3.3 Heavy Metal Ions Removal on Magnetite Silica–Chitosan Hybrid Materials 280
9.3.4 Heavy Metal Ions Removal on Silica–Chitosan Hybrid Materials with Chelating Agents 281
9.4 Summary 282
9.5 Future Scenario 282
References 283
10 Hybrid Ceramic Materials for Environmental Applications 285
Abstract 285
10.1 Introduction 285
10.2 Ceramics 286
10.3 Ceramic Nanocomposites 287
10.3.1 Fabrication Techniques 288
10.3.1.1 Sol–Gel 289
10.3.1.2 Spark Plasma Sintering Method 290
10.3.1.3 Chemical Vapour Deposition 290
10.3.1.4 Magnetron Sputtering 290
10.3.1.5 Intercalation 291
10.3.1.6 Organometallic Pyrolysis 291
10.3.1.7 Combustion Synthesis 291
10.3.1.8 Solid-State Processing 292
10.4 Ceramic Processing and Properties 292
10.4.1 Mechanical Properties 293
10.4.2 Electrical Properties 293
10.4.3 Optical Properties 293
10.5 Environmental Applications of Ceramics and Ceramic Nanocomposites 295
10.5.1 Water Treatment and Remediation 295
10.5.2 Desalination 297
10.5.3 Adsorbents 298
10.5.4 Sensing Devices 299
10.5.5 Photo-Induced Self-cleaning 299
10.5.6 Dye-Sensitized Solar Cells (DSSC) 301
10.5.7 Water Splitting 301
10.5.8 Air Purification and Remediation 302
10.5.9 Antibacterial Materials 303
10.6 Conclusion and Future Perspectives 304
Acknowledgements 304
References 305

Erscheint lt. Verlag 10.12.2016
Zusatzinfo XV, 297 p. 112 illus., 57 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Maschinenbau
Schlagworte Heavy metal removal • Hydroxyapatite-based nanoceramics • Nanoceramic materials • Nanostructured ceramics • Silicon carbide • Smart ceramic composites • Sol-Gel • Waste water treatment nanoceramics
ISBN-10 3-319-49512-7 / 3319495127
ISBN-13 978-3-319-49512-5 / 9783319495125
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen - Planung - Montage

von Wilfried Franke; Bernd Platzer

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 38,95