Composite Materials (eBook)
686 Seiten
Springer Berlin (Verlag)
978-3-662-49514-8 (ISBN)
Preface 6
Contents 10
About the Editor 12
Contributors 14
1 Polymer-Based Composite Structures: Processing and Applications 17
Introduction 18
Polymer Matrix Composites 20
Matrix Materials 21
Thermoset Resins 21
Thermoplastic Resins 23
Reinforcing Materials 24
Glass Fibers 24
Carbon/Graphite Fibers 25
Aramid Fibers 25
Boron Fibers 26
Current Manufacturing Methods of Polymer Matrix Composites 26
Hand Layup 26
Vacuum Bag Molding 28
Pressure Bag Molding 29
Filament Winding 31
Pultrusion 33
Resin Transfer Molding 35
Vacuum-Assisted Resin Transfer Molding (VARTM) 37
Compression Molding 39
Structural Reaction Injection Molding 41
Structural Foam Reaction Injection Molding 43
Sandwich Molding 44
Challenges in Manufacturing of Polymer Matrix Composites 45
Applications of Polymer Matrix Composites 46
Concluding Remarks 47
References 48
2 Polymer-Based Composite Materials: Characterizations 53
Introduction 54
Volume Fraction 55
Voids 56
Surface Roughness 57
Surface Topography 57
Mechanical 57
Strength 58
Modulus or Stiffness 68
Fatigue 73
Creep 74
Stress Relaxation 75
Performance Under Adverse Conditions 75
Thermal 76
Glass Transition Temperature 78
Electrical 78
Magnetic 79
Piezoelectric 80
Tribological 82
Bearing Strength 83
Rheological 85
Biological 87
Concluding Remarks 87
References 88
3 Newly Developed Rubber Pressure Molding Technique for Fabrication of Composites 94
Introduction 95
Manufacturing of Composites using Rubber Pressure Molding 96
Rubber Pressure Molding Setup for Cooler Pump Cap 96
Preparation of Split Steel Die 97
Design and Fabrication of Rubber Punch 98
Fabrication of Fiber-Reinforced Plastic Product 100
Theoretical Analysis 103
Effect of Processing Pressure 106
Effect of Strain Energy Density Function 108
Effect of Poisson´s Ratio 109
Effect of FRP Thickness 110
Effect of Fiber Volume Percent 112
Effect of Gap Between Fiber-Reinforced Plastic and Rubber Mold 112
Effect of Rubber Hardness 112
Performance of RPM to Fabricate FRP Components Based on Glass Fiber and Epoxy Resin 115
Performance of RPM to Fabricate FRP Components Based on Glass Fiber and Polyester Resin 119
Effect of Rubber Hardness on the Properties of FRP Composites Made by RPM 122
Successive Laminate Preparation from the Same Rubber Mold 129
Concluding Remarks 131
References 132
4 Functionally Graded Composites: Processing and Applications 134
Introduction 135
Classification of Functionally Graded Materials 136
General Classification 136
Classification Based on Processing Routes 137
Based on the Quality of Gradation Produced 143
Controlled Segregation 143
Controlled Blending 144
Classification Based on the Size of Gradation 144
Functionally Graded Thin Films 144
Three-Dimensional Functionally Graded Components 145
Based on the Phases Involved in the Processing 148
Polymer-Based Functionally Graded Materials 149
Characterization of Functionally Graded Composites 154
Characterization of Metal-Ceramic Functionally Graded Materials 154
Characterization of Polymer-Based Functionally Graded Materials 159
Applications 170
Concluding Remarks 175
References 176
5 Nano-/Microcomposites by Electrodeposition 184
Introduction 185
Electrodeposition: An Overview 186
Fundamentals of Electrodeposition 186
Nucleation and Growth 189
Electrodeposition as a Deposition Process 189
Particulate Composites by Electrodeposition 190
Matrix and Reinforcement Materials 190
Mechanism of Codeposition of Particles in Electrodeposition 192
Particulate Composites for Engineering Applications 195
Wear and Friction 195
Corrosion Resistance 195
High-Temperature Oxidation-Resistant Composite Coatings 197
Novel Functional Composites 198
Microcapsule-Containing Composites 198
Polymer-Based Functional Composites 199
Biocompatible Hydroxyapatite Composites 200
Composites in Catalyst and Energy Applications 200
Layered Nanocomposites 201
Electrodeposition Techniques for Laminated Nanocomposites 202
Structure of Electrodeposited Nanolaminated Composites 204
Properties of Electrodeposited Nanolaminated Composites 205
Strength 205
Wear Resistance 207
Corrosion Resistance 208
Magnetic Properties 209
Conclusions 210
References 210
6 Short Carbon Fiber-Reinforced Polycarbonate Composites 214
Introduction 215
Factors Affecting SFRP Composite Performance 216
Effect of Fiber Orientation and Volume Fraction 216
Effect of Fiber Length 217
Matrix-Fiber Interfacial Properties 218
Processing of SFRP Composites 218
Experimental 219
Materials 219
Preparation of Composite and Sampling 220
Characterization of PC/CF Composites 220
Tensile Strength 220
Fracture and Impact Strength 220
Dynamic Mechanical Analysis 221
Thermal Analysis (TG/DTA) 221
Microstructural Analysis 221
Results and Discussion 222
Mechanical Analysis 222
Scanning Electron Microscopy 226
Dynamic Mechanical Analysis 227
Thermal Analysis (TGA/DTA) 230
Fragmentation/Fiber Pullout Tests 232
Concluding Remarks 233
References 233
7 Ionic Polymer Metal Composites 237
Introduction 238
Significance of Ionic Polymer Metal Composites 238
Structure of Ionic Polymer Metal Composites 239
Working Principle of Ionic Polymer Metal Composites 241
Manufacturing of Ionic Polymer Metal Composites 242
Characterizations of Ionic Polymer Metal Composites 249
Modeling of Ionic Polymer Metal Composites 254
Applications 256
Actuators 257
Sensors 257
Artificial Muscles 258
Energy Harvesters 259
Fuel Cells 259
Microelectromechanical Systems 260
Biomedical 260
Concluding Remarks 261
References 261
8 Nanocomposites Based on Carbon Nanomaterials and Electrically Nonconducting Polymers 264
Introduction 265
Carbon Materials and Their Types 266
Graphite 268
Exfoliated Graphite 268
Graphene Oxide 268
Graphene/Reduced Graphene Oxide 268
Graphene Nanoplatelets 269
Carbon Nanotubes 269
Fullerene and Metallofullerene 269
Nanodiamond 270
Carbon Nanohorn 270
Carbon Nanoonion 270
Carbon Nanofibers 271
Polymer Systems Used for Fabrication of Carbon-Based Polymer Nanocomposites 271
Fabrication Methodologies of Polymer Nanocomposites 271
Carbon-Based Polymer Nanocomposites 273
Carbon Nanofiber-Based Polymer Nanocomposites 273
Carbon Nanotube-Based Polymer Nanocomposites 275
Exfoliated Graphite-Based Polymer Nanocomposites 277
Graphene (Reduced Graphene Oxide)-Based Polymer Nanocomposites 279
Graphene Oxide-Based Polymer Nanocomposites 280
Graphene Nanoplatelet-Based Polymer Nanocomposites 282
Fullerene- and Metallofullerene-Based Polymer Nanocomposites 283
Nanodiamond-Based Polymer Nanocomposites 284
Carbon Nanohorn-Based Polymer Nanocomposites 285
Carbon Nanoonion-Based Polymer Nanocomposites 287
Applications 288
Concluding Remarks 289
References 289
9 Syntactic Foams for Multifunctional Applications 294
Foams 295
Classification of Foams Based on Matrix 295
Classification of Foams Based on Method of Fabrication 295
Classification of Foams Based on Cell Structure 296
Syntactic Foams 296
Introduction 296
Structure of Syntactic Foams 297
Constituents of Syntactic Foams 298
Reinforcing Microspheres 298
Polymeric Binder Materials 299
Tailorability for Multifunctional Applications 299
Syntactic Foams for Structural Properties 299
Syntactic Foam Core Structural Sandwich Composites 303
Syntactic Foams for Temperature Withstandability 304
Temperature Withstandability of Epoxy Syntactic Foams 304
Temperature Withstandability of Cyanate Ester Syntactic Foams 305
CE-Epoxy Blend Syntactic Foams 307
Syntactic Foams for Microwave Transparency 307
Microwave Transparency and Dielectric Properties 307
Effect of Constituents of Syntactic Foams on Dielectric Properties 308
Dielectric Properties of Syntactic Foams 308
Syntactic Foam Sandwiches for Microwave Transparency 311
Syntactic Foams for Electromagnetic Interference (EMI) Shielding/Electromagnetic Compatibility (EMC) 312
Measurement of Electrical Resistivity of Syntactic Foams 314
Estimation and Evaluation of Shielding Effectiveness (SE) 314
Theoretical Estimation 314
Experimental Evaluation of SE 315
Effects of Conductive Reinforcements on Other Properties of EMI Shielding Syntactic Foams 315
Thermomechanical Properties 315
Flexural Properties 316
Syntactic Foam Core Sandwich Materials for EMI Shielding 317
Nanocomposite Syntactic Foams with Multifunctionalities 318
CNTs as Reinforcements in Syntactic Foams 319
Properties of CNT-Reinforced Syntactic Foams 320
Electrical Resistivity 320
Dynamic Mechanical Analysis (DMA) 321
Metal-Coated Hollow Microsphere-Embedded Syntactic Foams 322
Concluding Remarks 322
References 323
10 Advanced Carbon-Carbon Composites: Processing Properties and Applications 328
Introduction 330
Carbon Fibers 331
Polyacrylonitrile-Based Carbon Fibers 331
Spinning and Stretching 332
Stabilization 332
Carbonization 332
Graphitization 333
Pitch-Based Carbon Fibers 334
Preparation of Mesophase Pitch 334
Spinning and Thermosetting 335
Carbonization and Graphitization 335
Rayon-Based Carbon Fibers 335
Vapor-Grown Carbon Fibers 336
Carbon Fiber Architecture 337
Discrete Fibers 337
Unidirectional Fibers 337
Planar (2-D) Preforms 338
Three-Directional (3-D) Preforms 339
Multidirectional Structures 339
Carbon-Carbon Composites 339
Importance of Carbon-Carbon Composites 340
Current International Status of C/Cs 341
Structural Designs of C/Cs 342
Structural Aspects of C/Cs 343
Fabrication of Carbon-Carbon Composites 344
Chemical Vapor Infiltration 345
Isothermal Chemical Vapor Deposition 345
Thermal Gradient Vapor Deposition 346
Differential Pressure Chemical Vapor Deposition 346
Liquid-Phase Infiltration 347
Thermosetting Resins 348
Phenolic-Carbon Fiber Composites 348
Processing of Carbon-Carbon Composites with Pitch Matrices 349
Low-Cost Fabrication of Carbon-Carbon Composites 350
Properties of Carbon-Carbon Composites 353
Elastic Modulus 354
Strength 355
Fracture Toughness 357
Matrix-Dominated Properties 358
Thermal Properties 359
Effects of Heating Rate on the Properties of C/Cs 360
Effects of Carbon Additives on the Properties of Carbon-Carbon Composites 361
Machining of Carbon-Carbon Composites 365
Applications of Carbon-Carbon Composites 366
Carbon-Carbon Composites as Brake Disks 366
Carbon-Carbon Composites for Aerospace Industries 366
Carbon-Carbon Composites for Aeroengine and Turbine Components 367
Carbon-Carbon Composites in Nuclear Reactor 368
Carbon-Carbon Composites for Diesel Engine Components 370
Carbon-Carbon Composites as Refractory Materials 371
Hot Press Dies 371
High-Temperature Mechanical Fasteners 372
Carbon-Carbon Composites for Glassmaking 372
Carbon-Carbon Composites for Use at Intermediate Temperatures 372
Carbon-Carbon Composites for Chemical Industries 372
Carbon-Carbon Composites as Biocompatible Materials 372
Emerging Applications 373
Oxidation Protection Mechanism 373
Prospective and Challenges 374
References 375
11 Metal Matrix Composites: Theory, Techniques, and Applications 381
Introduction 383
Components 383
Matrix 383
Reinforcement 384
Types 386
Continuous or Long-Fiber Metal Matrix Composite 386
Discontinuous or Short-Fiber Metal Matrix Composite 388
Particulate MMC 391
Interface 392
Importance of Interface 392
Crystallographic Nature of Interface 392
Interfacial Bonding 392
Energy of Solid-Solid Interface 394
Syntheses 395
Liquid-State Processing 395
Solid-State Processing 400
Vapor-State Processing 402
Properties 404
Effects of Reinforcement Geometry on Mechanical, Elastic, and Plastic Behaviors 404
Fracture 404
Toughness and Fracture Toughness 407
Fatigue 408
Creep 408
Tribological Properties 409
Weldability 411
Electrical Conductivity 412
Thermal Properties 413
Advantages and Disadvantages 413
Advantages over Monolithic Metals 413
Advantages over Polymer Matrix Composites 414
Disadvantages 414
Factors Influencing Metal Matrix Composite Characteristics 414
Applications 414
Automotive Drive Shaft 415
Ground Vehicle Brake Disks and Calipers 415
Spacecraft 415
Aerospace Structures 416
Military Tank Track Shoes 417
Electronic Packaging Applications 417
Electronic Substrates 417
Explosion Engine Components 419
Space Satellite 419
Jet Fighter Aircraft Fins 419
Sports Industry 419
Biomedical Industry 419
Concluding Remarks 419
References 420
12 Effect of Concentration Gradient on the Magnetic Properties of Functionally Graded Styrene Butadiene Rubber Composites 424
Introduction 425
Processing of Functionally Graded Composites 426
Physical Properties of Magnetic Particle-Filled FGPC 427
Mechanical Properties of Magnetic Particle-Filled FGPC 429
Microanalysis of Magnetic Particle-Filled FGPC 431
Magnetic Properties of Magnetic Particle-Filled FGPC 433
Comparison of Magnetic Properties of UDPCs and FGPCs 441
Concluding Remarks 442
References 442
13 Mechanical, Electrical, and Tribological Properties of Copper-Graphite Composites 444
Introduction 445
Types of Copper-Graphite Composites 446
Particulate-Reinforced Copper-Graphite Composites 446
Whisker-Reinforced Copper-Graphite Composites 447
Continuous Fiber-Reinforced Copper Matrix Composites 447
Processing of Copper-Graphite Composites 448
Liquid State Processing 448
Solid State Processing 449
Microwave Heat Treatment 451
Results and Discussion 451
Microstructure Analysis 451
Evaluation of Mechanical and Electrical Properties 453
Tribological Investigation on Copper-Graphite Composites 456
Concluding Remarks 464
Future Scope 464
References 465
14 Current Advancements in Ceramic Matrix Composites 467
Introduction 468
Classifications of CMCs and Toughening Mechanism 471
Particulates 471
Laminates 472
Fibrous 473
Shape of Fiber 474
Fabrics 475
Whiskers 476
Fabrication 477
Solid State 477
Sol-Gel 478
Melt Infiltration 480
Resin Infiltration and Pyrolysis Reaction 481
Slurry Casting 481
Direct Metal Oxidation (DiMOx) 481
Liquid Silicon Infiltration (LSI) 482
Polymer Infiltration Pyrolysis (PIP) 483
Chemical Vapor Infiltration (CVI) 485
Reaction Processing 486
Chemical Vapor Deposition (CVD) 488
Specific Properties, Materials, and Techniques 489
Products Made of Advanced Ceramic Matrix Composites 493
Mechanical 493
Aerospace 496
Automotive 497
Defense Industry 498
Biomedical and Chemical Industries 498
Electrical and Magnetic Engineering 499
Nuclear Industry 499
Oil Industry 500
Electric Power Generation 500
Thermal Engineering 501
Optical Engineering 501
Concluding Remarks 502
References 502
15 Advanced ZrO2-Based Ceramic Nanocomposites for Optical and Other Engineering Applications 507
Introduction 508
Metals and Alloys 509
Polymers (and Plastics) 509
Ceramics 510
Traditional Ceramics 510
Advanced Ceramics 511
Hybrid Ceramics and Composites 512
Classical Composite Materials 513
Classification of Composites 515
Light-Emitting Materials and Applications 517
Monolithic and Doped ZrO2 of Hybrid Composites 518
ZrO2 Polymorphs 518
Limitations with Bulk ZrO2 Polymorphs 520
ZrO2 Polymorphs in Small Particles 521
Stabilized ZrO2 with Small Inclusions 523
Influence of Particle Size and Surface Energy 525
Influence of Structural Similarities 526
Stabilization by Lattice Strain 527
Stabilization by Oxygen Vacancies 527
Source of ZrO2 and Composites 528
Natural Source of ZrO2 and Derivatives 528
Chlorination of Zircon 529
Alkali Reaction of Zircon 529
Thermal Dissociation of Zircon 529
Method of Synthesis of Zirconia and Composites 529
Mechanochemical Process 530
Vapor Phase Reactions 530
Hydrothermal 531
Sol-Gel Method 532
Pechini or Pechini Method 533
Combustion or Autoignition Method 533
Spray Pyrolysis Method 534
Precipitation Method 534
Microemulsion Precipitation Method 535
Thermal Stability 537
Absorption and Emission 543
Polymeric Liquids and Nanogels 543
ZrO2 and Composites 548
Monolithic ZrO2 Particles 548
Hybrid ZrO2-Polymer Nanocomposites 550
Metal-Doped ZrO2 Nanocomposites (Cermets) 553
Rare-Earth Oxide-Modified ZrO2 Composites 555
Nanoporous ZrO2 with Optical Inclusions 560
Thermoluminescence 563
Applications 567
Concluding Remarks 569
References 569
16 xAgI-(1-x)MPO3 [M=Ag, Li) Superionic Composite Glasses and Their Current Issues 581
Superionic Conductors 582
Examples of Glassy Superionic Conductors 584
Phosphate Glasses 584
Synthesis of Phosphate Glass 585
Structural and Thermal Characterizations 586
Electrical Characterization 591
Current Issues 597
Conclusions 602
References 602
17 Carbon Nanotube-/Graphene-Reinforced Ceramic Composites 609
Introduction 610
Synthesis of Carbon Nanotube-/Graphene-Reinforced Ceramic Composites 612
Carbon Nanotube-Reinforced Ceramic Composites 613
Synthesis of Carbon Nanotubes 614
Dispersion of Carbon Nanotubes in Ceramic Matrix 614
Sintering of CNT-Dispersed Ceramic Powder 617
Graphene-Reinforced Ceramic Composites 618
Synthesis of Graphene 618
Dispersion of Graphene in Ceramic Matrix 618
Sintering of Graphene-Dispersed Ceramic Powder 619
Properties of Carbon Nanotube-/Graphene-Reinforced Ceramic Composites 619
Carbon Nanotube/Alumina Composites 619
Carbon Nanotube/Zirconia Composites 621
Carbon Nanotube-/Silicon-Derived Ceramic Composites 624
Graphene/Ceramic Composites 624
Reinforcement 625
Carbon Nanotube/Ceramic Composites 625
Graphene/Ceramic Composites 628
Emerging Applications of Carbon Nanotube/Graphene Ceramic Composites 628
Concluding Remarks 629
References 630
18 Bamboo Fiber-Based Polymer Composites 636
Introduction 636
Importance of Bamboo as Reinforcement 637
Anatomy of Bamboo 638
Bamboo Polymer Composites 639
Concluding Remarks 650
References 650
19 Superhydrophobic and Superoleophobic Surfaces in Composite Materials 655
Introduction 656
Physics of Wetting 657
Contact Angle and Hysteresis 657
Surface Tension and Surface Free Energy 659
Capillary Length, Contact Line, and Spreadability 659
Theoretical Wetting Models 660
Naturally Occurring Superhydrophobic Surfaces 662
Controlling Surface Energy of Liquid-Repelling Surfaces 667
Fluorocarbons 667
Silicones 668
Other Organic Materials 668
Inorganic Materials 669
Composites 670
Special Design Requirements for Superoleophobic Surfaces 671
Overhang Surfaces 671
Reentrant Surfaces 672
Naturally Occurring Superoleophobic Surfaces 673
Other Synthetic Liquid-Repelling Surfaces 675
Fabrication Technology of Liquid-Repelling Surfaces 676
Imprinting Methods 676
Chemical Deposition 679
Colloidal Assembly and Aggregation 682
Electrospinning and Electrospraying 683
Miscellaneous Methods 684
Application and Uses 684
Antibacterial 684
Antireflection 684
Corrosion Resistance 685
Device 685
Self-Cleaning 685
Heat Resistance 686
Oil and Water Collection 686
Oil/Water Separation 687
Others 687
Conclusions 687
References 687
| Erscheint lt. Verlag | 14.10.2016 |
|---|---|
| Zusatzinfo | XVII, 686 p. 382 illus., 135 illus. in color. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Themenwelt | Technik ► Maschinenbau |
| Schlagworte | High Temperature Materials • Metal Matrix Composites • Polymer based composite materials • Rubber Pressure • Thermal stability |
| ISBN-10 | 3-662-49514-7 / 3662495147 |
| ISBN-13 | 978-3-662-49514-8 / 9783662495148 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich