Wireless Transceiver Design (eBook)
400 Seiten
Wiley (Verlag)
978-1-118-93739-6 (ISBN)
Building upon the success of the first edition (2007), Wireless Transceiver Design 2nd Edition is an accessible textbook that explains the concepts of wireless transceiver design in detail. The architectures and the detailed design of both traditional and advanced all-digital wireless transceivers are discussed in a thorough and systematic manner, while carefully watching out for clarity and simplicity. Many practical examples and solved problems at the end of each chapter allow students to thoroughly understand the mechanisms involved, to build confidence, and enable them to readily make correct and practical use of the applicable results and formulas. From the instructors' perspective, the book will enable the reader to build courses at different levels of depth, starting from the basic understanding, whilst allowing them to focus on particular elements of study. In addition to numerous fully-solved exercises, the authors include actual exemplary examination papers for instructors to use as a reference format for student evaluation.
The new edition has been adapted with instructors/lecturers, graduate/undergraduate students and RF engineers in mind. Non-RF engineers looking to acquire a basic understanding of the main related RF subjects will also find the book invaluable.
Ariel Luzzatto, L&L Scientific Ltd., Israel
Motti Haridim, Holon Institute of Technology (HIT), Israel
Ariel Luzzatto, L&L Scientific Ltd., Israel Motti Haridim, Holon Institute of Technology (HIT), Israel
Title Page 5
Copyright Page 6
Contents 9
Foreword 18
To the Instructor 19
About the Authors 20
Acknowledgment 21
Chapter 1 Introduction 23
1.1 Radio Frequency Systems 23
1.1.1 Conceptual RF system 23
1.1.2 The frequency spectrum 24
1.1.3 Cellular concept 25
1.2 Detailed Overview of Wireless Systems and Technologies 26
1.2.1 System types 26
1.2.2 Wireless network architectures 27
1.2.2.1 Wireless Personal Area Network 27
1.2.3 Wireless local area network 33
1.2.3.1 Wi-Fi 35
1.2.3.2 Wi-Fi Direct 36
1.2.4 Wireless wide area network 36
1.2.4.1 Cellular Systems 36
1.2.4.2 The Concept of Frequency Reuse 36
1.2.5 Access methods 42
1.2.5.1 Multiple access 42
1.2.5.2 Frequency division multiple access 42
1.2.5.3 Time division multiple access 43
1.2.5.4 Code division multiple access 43
1.2.5.5 Why to spread? 44
1.2.6 Transmit–receive regimes 46
1.2.6.1 Wireless transmission regimes (or modes) 46
1.2.6.2 Simplex mode 46
1.2.6.3 Half-duplex mode 47
1.2.6.4 Full duplex mode 47
1.2.6.5 Duplexing 47
1.2.6.6 Frequency division duplex 47
1.2.6.7 Time division duplex 48
Bibliography 48
Chapter 2 Transceiver Architectures 49
2.1 Receiver Architectures 49
2.2 Superheterodyne Receiver 51
2.2.1 What is it and how it works 51
2.2.2 Pros and cons 55
2.2.3 Choosing the IF frequency 56
2.3 Direct Conversion Receiver 57
2.3.1 What is it and how it works 57
2.3.2 Pros and cons 57
2.4 Direct RF Sampling Receiver 58
2.4.1 What is it and how it works 58
2.4.1.1 Exercise: Determining sampling rate 62
2.4.2 Recovering I and Q channels in DRFS 62
2.4.2.1 Exercise: Recovering I and Q with bandwidth oversampling 63
2.5 Transmitter Architectures 64
2.6 Two Step Conversion Transmitter 65
2.6.1 What is it and how it works 65
2.6.2 Pros and cons 67
2.7 Direct Launch Transmitter 68
2.7.1 What is it and how it works 68
2.7.2 Pros and cons 68
2.8 Direct RF Sampling Transmitter 69
2.9 Transceiver Architectures 73
2.10 Full Duplex/Half-duplex Architecture 73
2.11 Simplex Architecture 74
2.12 Solved Exercises 75
2.13 Theory Behind Equations 81
2.13.1 DRFS transmitter 81
2.13.2 Sampling theorem reminder 82
Bibliography 84
Chapter 3 Receiving Systems 85
3.1 Sensitivity 87
3.1.1 What is it and how it works 87
3.1.1.1 The definition of sensitivity 89
3.1.1.2 Exercise: Estimating a cell phone range 90
3.1.2 Interim sensitivity 91
3.1.2.1 Computing the noise factor of two cascaded stages 92
3.1.2.2 Exercise: Cascaded noise factor 93
3.1.2.3 Exercise: Computing SHR sensitivity 94
3.1.3 Measurement of sensitivity 96
3.1.3.1 Noise doubling approach 97
3.2 Co-channel Rejection 98
3.2.1 What is it and how it works 98
3.2.1.1 Definition of co-channel rejection 98
3.2.2 Measurement of co-channel rejection 99
3.3 Selectivity 100
3.3.1 What is it and how it works 100
3.3.1.1 Oscillator phase noise 100
3.3.1.2 Exercise: L (?f) estimation 103
3.3.1.3 Selectivity mechanisms 104
3.3.1.4 The definition of selectivity 106
3.3.1.5 Exercise: DCR selectivity 107
3.3.2 Measurement of selectivity 107
3.4 Blocking 108
3.4.1 What is it and how it works 108
3.4.1.1 The definition of blocking 109
3.4.1.2 Exercise: Blocking-free distance 110
3.4.2 Measurement of blocking 111
3.5 Intermodulation Rejection 111
3.5.1 What is it and how it works 111
3.5.1.1 The definition of intermodulation 113
3.5.1.2 Effect of added gain (or loss) 114
3.5.1.3 Exercise: Intermodulation 116
3.5.2 Measurement of intermodulation 116
3.6 Image Rejection 117
3.6.1 What is it and how it works 117
3.6.1.1 The definition of image rejection 119
3.6.1.2 Exercise: IR and front filter 119
3.6.2 Measurement of image rejection 120
3.7 Half-IF Rejection 120
3.7.1 What is it and how it works 120
3.7.1.1 The definition of half-IF rejection 122
3.7.1.2 Exercise: HIFR and front filter 123
3.7.2 Measurement of half-IF rejection 124
3.8 Dynamic Range 124
3.8.1 What is it and how it works 124
3.8.1.1 The definition of dynamic range 125
3.8.2 Measurement of dynamic range 125
3.9 Duplex Desense 125
3.9.1 What is it and how it works 125
3.9.1.1 The definition of duplex desense 127
3.9.1.2 Exercise: Required T-R attenuation to keep D ? 3 dB 127
3.9.2 Measurement of duplex desense 128
3.10 Other Duplex Spurs 129
3.10.1 What they are and how they work 129
3.10.1.1 Duplex image rejection 129
3.10.1.2 Half duplex spur 129
3.10.1.3 Phantom duplex spur 130
3.11 Other Receiver Interferences 130
3.11.1 What they are and how they work 130
3.11.1.1 Self quieters 130
3.11.1.2 Able–baker spurs 132
3.11.1.3 Doppler blocking 132
3.11.1.4 Second-order distortion 132
3.11.1.5 Spurious free dynamic range 133
3.12 Solved Exercises 133
3.13 Theory Behind Equations 148
3.13.1 Sensitivity 148
3.13.2 Co-channel rejection 150
3.13.3 Selectivity 150
3.13.4 Intermodulation 151
3.13.5 Image rejection 152
3.13.6 Half-IF rejection 153
3.13.7 Duplexer mechanisms 154
3.13.7.1 Isolation mechanism 154
3.13.7.2 Noise attenuation mechanism 156
3.13.8 Duplex desense 157
3.14 Extension to Direct RF Sampling Receivers 158
3.14.1 ADC noise factor 158
3.14.1.1 Exercise: Computing ADC noise floor and noise figure 159
3.14.1.2 Exercise: Computing DRFS sensitivity 159
3.14.2 SNR, selectivity, and blocking in a DRFS receiver 160
3.14.2.1 SNR 161
3.14.2.2 Selectivity and blocking 162
3.14.2.3 Exercise: DRFS blocking 163
3.14.2.4 IMR3 164
3.14.2.5 Exercise: Estimating IP3i of an ADC 164
3.14.3 Reminder on quantization noise 164
Bibliography 165
Chapter 4 Transmitting Systems 167
4.1 Peak to Average Power Ratio 169
4.1.1 What is it and how it works 169
4.1.1.1 Exercise: PAPR of unfiltered 16 QAM 170
4.1.2 Measurement of PAPR 172
4.2 Nonlinearity in RF Power Amplifiers 172
4.2.1 What is it and how it works 172
4.2.2 Third-order dominated PA behavior 176
4.2.2.1 Exercise: Computation of third-order dominated PA coefficients 177
4.2.3 Fifth-order dominated PA behavior 179
4.2.3.1 Exercise: computation of fifth-order dominated PA coefficients 179
4.2.4 In-band spectral picture of PA output 181
4.2.5 Description of PA simulation methodology 182
4.2.5.1 The input signal v(t) 183
4.2.5.2 The output signal V[v(t)] 185
4.2.5.3 The input and output spectral picture 185
4.2.6 N-th order intermodulation distortion 185
4.2.6.1 Exercise: Coefficient-based versus SPICE simulation of spectral re-growth 190
4.2.6.2 Laboratory measurement of IMDN 193
4.2.7 N-th order input intercept point 193
4.2.7.1 Exercise: Estimating IMDN from IPNi 194
4.2.7.2 Exercise: Rule of thumb 195
4.2.7.3 Exercise: IPNi using voltages 195
4.3 Transmitter Specifications 196
4.3.1 Spectral mask 196
4.3.2 Error vector magnitude 196
4.3.2.1 Other causes of EVM degradation 198
4.3.3 Adjacent coupled power ratio 198
4.3.4 PA efficiency 199
4.3.5 Transmitter transients 200
4.3.5.1 Attack time 200
4.3.5.2 Frequency shift upon keying 201
4.3.6 Radiated emission 201
4.3.7 Conducted spurs 201
4.4 Enhancement Techniques 202
4.4.1 Linearization techniques 203
4.4.1.1 Cartesian feedback 203
4.4.1.2 Feed-forward 205
4.4.1.3 Pre-distortion 207
4.4.2 Envelope-tracking supply 208
4.5 Solved Exercises 208
4.6 Theory Behind Equations 220
4.6.1 Computation of PAPR for quasi-static RF signals 220
4.6.2 Analytic models for PA nonlinearity 223
4.6.3 Effects of PA nonlinearity on digital modulation 226
4.6.4 Effects of PA nonlinearity on spectral shape 227
4.6.5 Characterization of PA nonlinearity 232
4.6.5.1 N-th order intermodulation distortion 234
4.6.5.2 N-th order input intercept point 235
Bibliography 236
Chapter 5 Synthesizers 238
5.1 Integer-N Synthesizer 238
5.1.1 What is it and how it works 238
5.1.1.1 The lock-up mechanism 241
5.1.1.2 Lock-up time 243
5.1.1.3 Exercise: Estimating integer-N lock time 246
5.1.1.4 Something more on reference spurs and pre-integration capacitor 247
5.1.1.5 Exercise: Estimating reference spurs attenuation 247
5.1.1.6 Something more on phase-frequency detector modes 248
5.2 Fractional-N Synthesizer 250
5.2.1 What is it and how it works 250
5.2.1.1 Exercise: Estimating fractional-N lock time 252
5.2.2 Example: Dual-count fractional-N 253
5.3 Direct Digital Synthesizer 254
5.3.1 What is it and how it works 254
5.3.1.1 Exercise: Basic DDS design 256
5.4 Integer-N/DDS Hybrid Synthesizer 257
5.4.1 What is it and how it works 257
5.5 Solved Exercises 258
5.6 Theory Behind Equations 266
5.6.1 Integer-N analysis 266
5.6.1.1 Transient analysis 268
5.6.1.2 Lock time analysis 272
Bibliography 273
Chapter 6 Oscillators 275
6.1 Low-power Self-limiting Oscillators 276
6.1.1 What is it and how it works 276
6.1.1.1 The self-limiting oscillation mechanism 276
6.1.1.2 Oscillator phase noise 279
6.1.2 Practical circuits 280
6.1.2.1 Exercise: NAND gate-driven oscillator 282
Exercise: Bipolar transistor-driven oscillator 286
6.2 Oscillators Using Distributed Resonators 292
6.2.1 What is it and how it works 292
6.2.1.1 Crystal resonators 292
6.2.1.2 Transmission-line resonators 293
6.3 Solved Exercises 295
6.4 Theory Behind Equations 310
6.4.1 General ?-topology filter analysis 310
6.4.2 Leeson´s equation 312
6.4.2.1 Narrowband FM 312
6.4.2.2 Narrowband-FM through narrow band-pass filters 313
6.4.2.3 Leeson´s model 315
6.4.2.4 Computing clock jitter from oscillator phase noise 318
6.4.3 Lumped equivalent of resonant transmission lines 321
6.4.3.1 Open-ended ?/4 resonator – lumped equivalent 322
6.4.3.2 Short-ended ?/4 resonator – lumped equivalent 323
6.4.4 Voltage controlled oscillators 323
Bibliography 324
Chapter 7 Functional RF Blocks 325
7.1 Antenna 325
7.1.1 What is it? 325
7.1.2 How it works 325
7.1.3 Basic parameters of antennas 326
7.1.3.1 Radiation pattern 326
7.1.3.2 Directivity 326
7.1.3.3 Efficiency 327
7.1.3.4 Gain 327
7.1.3.5 Effective area 327
7.1.3.6 Input impedance and radiation resistance 327
7.1.3.7 Measurement of antenna input impedance 328
7.1.3.8 Beamwidth 329
7.1.3.9 Polarization 329
7.1.4 Antenna arrays 329
7.1.4.1 Pattern multiplication principle 330
7.1.5 Smart antennas 330
7.1.5.1 Phased array 330
7.1.6 Antenna types 330
7.1.6.1 Isotropic antennas 331
7.1.6.2 Dipole 331
7.1.6.3 Whip 331
7.1.6.4 Planar inverted-F 332
7.1.6.5 Slot 332
7.1.6.6 Microstrip (patch) antennas 333
7.1.7 Solved exercises 334
7.2 Low Noise Amplifier 335
7.2.1 What is it and how it works 335
7.2.2 Noise of two-port networks (classical approach) 336
7.2.2.1 MOS transistor thermal noise 338
7.2.2.2 Stability 339
7.2.2.3 Matching options 339
7.2.3 LNA topologies 340
7.2.3.1 Shunt resistor at input – resistor termination 340
7.2.3.2 Shunt-series feedback 341
7.2.3.3 Common gate LNA 341
7.2.3.4 CS with inductive source degeneration 342
7.3 Filters 345
7.3.1 Filter design 347
7.3.2 Filter families 348
7.3.2.1 Butterworth filter 348
7.3.2.2 Chebyshev filter 348
7.3.2.3 Elliptic filter 349
7.3.2.4 Bessel filter 349
7.3.3 Filter types 349
7.3.3.1 Preselector filter 349
7.3.3.2 Diplexer 350
7.3.3.3 IF filter 350
7.3.3.4 Harmonic filter 350
7.3.4 Filter technologies 350
7.3.4.1 Crystal filters 350
7.3.4.2 Surface acoustic wave filters 351
7.4 Power Amplifier 352
7.4.1 Amplifier classes 353
7.4.1.1 Class A 353
7.4.1.2 Class B 354
7.4.1.3 Class AB 355
7.4.1.4 Class C 355
7.4.2 Design 356
7.5 Mixer 363
7.5.1 Performance measures 363
7.5.1.1 Conversion loss/gain 364
7.5.1.2 Noise figure 364
7.5.1.3 Linearity 364
7.5.1.4 Isolation 364
7.5.1.5 Spurs 364
7.5.2 Mixer types 364
7.5.2.1 Unbalanced mixers 365
7.5.2.2 Single-balanced mixers 365
7.5.2.3 Double-balanced mixers 365
7.5.3 MOSFET mixer 365
7.5.4 Bipolar mixer 367
Bibliography 368
Chapter 8 Useful Reminders 369
8.1 The RF Channel 369
8.1.1 Large and small scale fading 369
8.1.1.1 Multipath fading 369
8.1.1.2 Propagation delay 370
8.1.1.3 Delay spread 370
8.1.1.4 Coherence bandwidth 371
8.1.2 Fade margin 371
8.1.3 Fading classification 371
8.1.3.1 Flat fading 372
8.1.3.2 Frequency-selective fading 372
8.1.3.3 Slow fading 372
8.1.3.4 Fast fading 372
8.1.3.5 Rayleigh fading 372
8.1.3.6 Rice fading 373
8.1.4 Doppler effect 373
8.2 Noise 374
8.2.1 Thermal noise 374
8.2.2 Signal to noise ratio 375
8.2.3 Noise factor and noise figure 375
8.2.3.1 Noise figure of cascaded stages 376
8.2.3.2 Noise floor 376
8.3 Propagation 377
8.3.1 Logarithmic scale 377
8.3.2 Friis formula 377
8.3.3 Two ray model 378
8.4 Path loss 379
8.5 Modulation 379
8.5.1 Amplitude modulation 379
8.5.2 Frequency modulation 381
8.5.2.1 FM transmitter 382
8.5.2.2 FM receiver 382
8.5.3 Modeling carrier phase noise as narrowband FM 383
8.6 Multiple Input Multiple Output 384
8.6.1 How many independent data streams are possible? 385
Bibliography 386
Appendix – Exemplary Exams 387
Exam 1 387
Exam 2 389
Index 391
EULA 403
| Erscheint lt. Verlag | 8.9.2016 |
|---|---|
| Sprache | englisch |
| Themenwelt | Technik ► Elektrotechnik / Energietechnik |
| Technik ► Nachrichtentechnik | |
| Schlagworte | Authors • Bibliography • Communication Technology - Networks • Drahtlose Kommunikation • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Equations • Exercises • Foreword • Frequency • Halbleiter • instructor • Introduction • Kommunikationsnetze • Mobile & Wireless Communications • Overview • Radio • Receiver • semiconductors • Systems • theory • Transceiver • Transmitter • Wireless • XVI |
| ISBN-10 | 1-118-93739-2 / 1118937392 |
| ISBN-13 | 978-1-118-93739-6 / 9781118937396 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich