Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Ironmaking and Steelmaking Processes (eBook)

Greenhouse Emissions, Control, and Reduction

Pasquale Cavaliere (Herausgeber)

eBook Download: PDF
2016 | 1st ed. 2016
466 Seiten
Springer International Publishing (Verlag)
978-3-319-39529-6 (ISBN)

Lese- und Medienproben

Ironmaking and Steelmaking Processes -
Systemvoraussetzungen
223,63 inkl. MwSt
(CHF 218,45)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book describes improvements in the iron and steel making process in the past few decades. It also presents new and improved solutions to producing high quality products with low greenhouse emissions. In addition, it examines legislative regulations regarding greenhouse emissions all around the world and how to control these dangerous emissions in iron and steel making plants.    



Pasaquale Cavaliere is an Associate Professor at the University of Salento in Italy. 

Pasaquale Cavaliere is an Associate Professor at the University of Salento in Italy. 

Preface 6
Contents 8
Part I: Sintering Plants Operations 11
Chapter 1: Sinter Plant Operations: Raw Materials 12
1.1 Introduction to the Raw Materials Used in an Integrated Steelworks 12
1.1.1 Iron Ores 12
1.1.1.1 Iron Ore Fines 12
1.1.1.2 Iron Ore Lump 13
1.1.1.3 Concentrate 13
1.1.1.4 Pellet 13
1.1.1.5 Some Common Iron Ores 13
1.1.2 Fuel 15
1.1.2.1 Coke Breeze 15
1.1.2.2 Anthracite 16
1.1.2.3 Biomass (Carbonized Palm Shell) 17
1.1.3 Fluxes 17
1.1.3.1 Limestone 17
1.1.3.2 Dolomite 18
1.1.3.3 Serpentine or Olivine 18
1.1.3.4 Silica Sand 19
1.1.4 Reverts 19
1.1.4.1 Dust 20
1.1.4.2 Scale 20
1.1.4.3 Sludge and Slurry 21
1.1.4.4 Slag and Slag Tailing 21
1.1.4.5 Others 22
1.2 Introduction to Raw Materials Handling 23
1.2.1 Unloading and Conveying 23
1.2.1.1 Unloaders 23
Bucket-Chain CSU 24
Screw Type CSU 25
Grab Type Ship Unloader 25
1.2.2 Conveyor 25
1.2.2.1 Steel Cord Conveyor Belt 26
1.2.2.2 Canvas Conveyor Belt 26
1.2.2.3 Aramid Conveyor Belt 27
1.2.3 Stock Yard 28
1.2.3.1 Open Yard 28
1.2.3.2 Indoor Yards 28
1.2.4 Blending Silo and Blending Yard 30
1.2.4.1 Blending Silos 30
1.2.4.2 Blending Operations 31
1.2.5 Reverts Homogenization Plant 32
References 35
Chapter 2: Predictions of PCDD/F, SOx, NOx, and Particulates in the Iron Ore Sintering Process of Integrated Steelworks 36
2.1 Introduction 37
2.2 Theory 39
2.3 Results and Discussions 40
2.3.1 Model Verification 41
2.3.2 New Technologies Based on Fossil Fuels 42
2.3.3 New Technologies Based on Biomass and Biogas Operations (Renewable Fuels) 42
2.4 Conclusions 46
References 46
Chapter 3: Dangerous Emissions Control and Reduction in Sinter Plants 48
3.1 Introduction 48
3.1.1 Process Description 49
3.1.2 Emissions Formation 50
3.2 Experimental-Numerical Approach 51
3.3 Results and Discussion 53
3.4 Conclusions 66
References 66
Chapter 4: Pollutants Emission and Control for Sintering Flue Gas 68
4.1 Overview 68
4.2 De-dust technologies for Sintering Flue Gas Control 69
4.2.1 Mechanical Dust Extractors 70
4.2.2 Electrostatic Precipitators 70
4.2.3  Bag Filters  71
4.2.4 Electric–Bag Composite Dust Collectors 72
4.2.5 Wet-Type Electric Dust Collectors 72
4.3 SO2 Control Technologies in Sintering Flue Gas 73
4.3.1 Limestone–Gypsum Wet Method of Desulfurization 74
4.3.2 Ammonia–Ammonia Sulfate Desulfurization 74
4.4 Control Technologies for Nitrogen Oxide in Sintering Flue Gas 75
4.4.1 Flue Gas Circulation 75
4.4.2 Selective Catalytic Reduction Method 75
4.4.3 Oxidation Absorption Method 77
4.5 Dioxin Control Technology for Sintering Flue Gases 77
4.5.1 Emission Characteristics of Dioxin in the Sintering Process 77
4.5.2 Control of Dioxin in the Sintering Process 78
4.5.2.1 Source Reduction 78
4.5.2.2 Process Control 78
4.5.2.3 Terminal Management 80
4.6 Multiple Pollutants Control Technologies for Sintering Fuel Gas 80
4.6.1 Actived Carbon Multiple Pollutants Control Technology 81
4.6.2 Desulfurization with Actived Carbon Injection 81
4.6.2.1 MEROS Technology 81
4.6.2.2 IOCFB Multiple Pollutants Control Technology 82
References 83
Chapter 5: Sinter Plant Operations: Hazardous Emissions 84
5.1 Introduction 84
5.1.1 Size Requirements 85
5.1.2 Metallurgical Property Requirements 85
5.2 Brief Background on Iron Ore Sintering 86
5.2.1 Outline of Sintering Operations 86
5.2.2 Fundamental Reactions of the Sintering Process (Pimenta 2012) 88
5.2.3 Mineral Transformation During Iron Ore Sintering Process 89
5.3 Hazardous Pollutant Emissions from Sinter Plants 90
5.3.1 Dust 90
5.3.2 NOx (Mou 1998) 91
5.3.3 De-NOx 91
5.3.4 SOx 92
5.3.5 Sulfur Journey in Iron Ore Sintering Process 93
5.3.6 Conventional De-SOx Technologies 94
5.3.7 In-Process De-SOx Technology 94
5.3.8 Dioxins-PCDD/PCDF (Kasai 2002) 95
5.3.9 Formation Mechanism of Dioxins (Kasai 2002) 96
Dioxin Formation in Sintering Process 96
5.3.10 Countermeasures for Dioxin Reduction 101
5.3.10.1 Dioxin Reduction by SCR Catalyst 101
5.3.10.2 Dioxin Removal by Lignite Coke Absorption 102
References 106
Part II: Blast Furnace Operations 108
Chapter 6: Recent Trends in Ironmaking Blast Furnace Technology to Mitigate CO2 Emissions: Top Charging Materials 109
6.1 Introduction 110
6.2 Conventional Top Charging Materials 112
6.3 Shifting the Process Toward Lower CO/CO2 113
6.4 Recently Developed Top Charging Materials 116
6.4.1 Active Coke 116
6.4.2 In-Plant Fines 118
6.5 Novel Top Charging Materials (Iron Ore-Carbon Composite) 120
6.5.1 Producing of Iron Ore-Carbon Composites 121
6.5.2 Reduction Behavior of Composite Pellets 123
6.6 Alternative Reducing Agents 126
6.6.1 Plastic Materials 126
6.6.2 Biomass 127
6.7 Summary 128
References 128
Chapter 7: Dangerous Emissions in Blast Furnace Operations 133
7.1 Introduction 133
7.2 H2S and SO2 Emissions 134
7.2.1 Source 134
7.2.2 Emission 135
7.2.3 Abatement 136
7.3 NOx Emissions 137
7.3.1 Source 137
7.3.2 Emission 138
7.3.3 Abatement 139
7.4 Heavy Metal Emissions 139
7.4.1 Source 139
7.4.2 Emission 140
7.4.3 Abatement 141
7.5 Fluoride Emissions 142
7.5.1 Source 142
7.5.2 Emission 142
7.5.3 Abatement 143
7.6 Conclusions 144
References 144
Chapter 8: Mathematical Simulation of Blast Furnace Operation 147
8.1 Introduction 147
8.2 Kinetic Model of Reduction 148
8.2.1 Simulation of Reduction in the Fixed Bed 148
8.2.2 Calculation of Specific Carbon Consumption 150
8.3 Practical Modeling of Results of Reducibility Test 152
8.3.1 Example of Calculation of Reduction Run in the Area of Indirect Reduction 152
8.3.2 Use of Kinetics Simulation for CDR Diagram Modification 154
8.4 Conclusion 157
References 158
Chapter 9: CO2 Emission Reduction in Blast Furnaces 159
9.1 Introduction 159
9.2 Blast Furnace Operations 161
9.2.1 Blast Furnace Processes 161
9.3 CO2 Emissions 166
9.4 Experimental Procedure 168
9.5 Results and Discussion 170
9.6 Conclusions 176
References 179
Chapter 10: Recent Trends in Ironmaking Blast Furnace Technology to Mitigate CO2 Emissions: Tuyeres Injection 180
10.1 Introduction 181
10.1.1 Iron- and Steelmaking Technologies 182
10.1.2 Energy Consumption and CO2 Emissions in Steel Industry 182
10.2 Pulverized Coal Injection into BF 184
10.2.1 PCI Technology 185
10.2.2 PCI Combustion 187
10.2.3 High Rate of PCI 189
10.3 Auxiliary Fuel Injection 190
10.3.1 Oil and Natural Gas Injection 190
10.3.2 Coke Oven Gas and Converter Gas Injection 192
10.3.3 Waste Plastic Injection 195
10.3.4 Secondary Material Injection 196
10.3.5 Biomass Injection 197
10.4 Summary 199
References 200
Chapter 11: Low CO2 Emission by Improving CO Utilization Ratio in China’s Blast Furnaces 205
11.1 Introduction 205
11.2 The Upper Adjustment 206
11.2.1 Batch Weight 206
11.2.2 Charging Mode 208
11.2.3 Stock Line 211
11.3 The Lower Adjustment 211
11.3.1 Gas Volume 211
11.3.2 Gas Temperature 212
11.3.3 Gas Humility 215
11.4 Conclusions 216
References 217
Part III: Electric Arc Steelmaking 219
Chapter 12: Dioxin Emission Reduction in Electric Arc Furnaces for Steel Production 220
12.1 Introduction 220
12.2 Electric Arc Furnace Operations 222
12.3 Greenhouse Emission Reduction 223
12.4 Conclusions 227
References 227
Chapter 13: Emission of High Toxicity Airborne Pollutants from Electric Arc Furnaces During Steel Production 228
13.1 Introduction 228
13.2 EAF Plant Description 229
13.3 Emission Measurements 230
13.4 Discussion 232
13.5 Conclusions 239
References 240
Chapter 14: Use of Sustainable Inorganic Binders in the Treatment of Bag-House Dust 241
14.1 Introduction 242
14.2 Solidification/Stabilisation (S/S) Treatment of Hazardous Wastes 243
14.3 Effect of EAFD Addition on S/S Products Using PC, Lime, LGMgO, Steel Slag and PFA 245
14.4 Conclusions 247
References 248
Chapter 15: Dangerous Emissions During Steelmaking in Electric Arc Furnaces 250
15.1 Categories of Dangerous Emissions Generated from the Steelmaking in the Electric Arc Furnaces 250
15.1.1 What Are Dangerous Emissions? 251
15.2 Potential Sources That Generate the Dangerous Emissions from the Steelmaking in the Electric Arc Furnaces 254
15.2.1 Potential Sources That Generate Carbon Oxides 254
15.2.2 Potential Sources That Generate Sulphur Oxides 254
15.2.3 Potential Sources That Generate Nitrogen Oxides 254
15.2.4 Potential Sources That Generate Volatile Organic Compounds 255
15.2.5 Potential Sources That Generate Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans 255
15.2.6 Potential Sources That Generate Particulate Matter 255
15.3 The Generation Mechanisms of Dangerous Emissions from the Steelmaking in the Electric Arc Furnaces 256
15.3.1 The Generation Mechanisms of Carbon Oxides 256
15.3.2 The Generation Mechanisms of Sulphur Oxides 256
15.3.3 The Generation Mechanisms of Nitrogen Oxides 257
15.3.4 The Generation Mechanisms of Volatile Organic Compounds 259
15.3.5 The Generation Mechanisms of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans 259
15.3.6 The Generation Mechanisms and Compositions of Particulate Matters 261
15.4 Methods of Minimizing the Dangerous Emissions from the Steelmaking in the Electric Arc Furnaces 263
15.5 Conclusions 265
References 265
Chapter 16: Electric Arc Furnace 269
16.1 Electric Steelmaking 269
16.1.1 Equipment 272
16.1.2 Melting Practice 273
16.2 EAF CO2 Emissions 274
16.3 Technologies to Decrease EAF CO2 Emissions 277
16.4 CO2 Emissions and the Future of the Electric Arc Furnace 282
16.5 Conclusions 282
References 283
Part IV: Greenhouse Emissions 284
Chapter 17: Technological Methods to Protect the Environment in the Ukrainian BOF Shops 285
17.1 Introduction 285
17.2 Affection of Harmful Factors of Steelmaking Production on the Biosphere 286
17.3 Technical Solutions for the Atmosphere Protection on the Metallurgical Plants 288
17.3.1 Cleaning and Cooling of the BOF Waste Gases 288
17.3.2 BOF Pipeline 289
17.3.3 Units with Full Post-Combustion of Carbon Monoxide 290
17.3.4 Units with Partial Post-Combustion of Carbon Monoxide 292
17.3.5 Units Without Carbon Monoxide Post-Combustion 293
17.4 Decrease of Unorganized Emission of Harmful Substances into the Atmosphere on Metallurgical Plants 296
17.5 Conclusions and Recommendations 298
Chapter 18: State of the Art in Air Pollution Control for Sinter Plants 300
18.1 Introduction 300
18.2 Emissions from the Sintering Process and Primary Methods of Emission Reduction 302
18.2.1 The Sintering Process 302
18.2.2 Emissions from the Sintering Process 303
18.2.3 Primary Measures for Emission Reduction 305
18.2.3.1 Control of Recycling Material 305
18.2.3.2 Off-Gas Recirculation 306
18.2.3.3 Suppression of PCDD/F Formation 307
18.3 Emission Reduction Processes 308
18.3.1 Advanced Dry De-dusting of Sintering Off-Gas 308
18.3.2 Reduction of SOx Emissions 309
18.3.3 Reduction of PCDD/F Emissions 309
18.3.4 Reduction of NOx Emissions 310
18.3.5 Simultaneous Reduction of SOx and NOx Emissions 311
18.3.6 Advanced Wet Emission Reduction Processes 311
18.4 Residues from Dry Off-Gas Cleaning at Sinter Plants 312
18.4.1 Residue from De-dusting of Sintering Off-Gas 312
18.4.2 Residues from Desulphurization of Sintering Off-Gas 312
18.5 Future Developments 313
18.5.1 Reduction of NOx Emissions in Sinter Plants with Catalytic Bags Filters 313
18.5.2 Single-Stage Gas Cleaning with a Bag Filter 313
18.5.3 Metal Mesh Dust Filter 314
18.6 Conclusions 314
References 314
Chapter 19: Risk Assessment and Control of Emissions from Ironmaking 319
19.1 Introduction 319
19.2 Pollutant Types and Their Effects 321
19.3 Material Inputs and Outputs of Iron Industrial Processes 322
19.3.1 Sintering Process 322
19.3.2 Iron Ore Pelletising 324
19.3.2.1 Iron Ore Pelletising Process 324
19.3.2.2 Comparison of Sintering and Pelletising 326
19.3.3 Cokemaking 327
19.3.4 Ironmaking in Blast Furnaces 329
19.4 Emission Abatement Measures 331
19.5 Conclusions 331
References 336
Chapter 20: CO2 Emission in China’s Iron and Steel Industry 338
20.1 Introduction 338
20.2 Factors Affecting Carbon Emissions in Iron and Steel Industry 339
20.2.1 The Production Process 339
20.2.2 Energy Structure 340
20.2.3 Energy Efficiency 340
20.2.4 Production Equipment 340
20.2.5 Quality of Raw Material 340
20.2.6 Low Carbon Production Technology 341
20.3 Carbon Emissions in Iron and Steel Industry 341
20.3.1 Coke Oven Process 342
20.3.2 Sintering Process 344
20.3.3 Pelletizing Process 344
20.3.4 The Blast Furnace Iron-Making Process 345
20.3.5 The Converter Steelmaking Process 346
20.3.6 The Electric Steelmaking Process 347
20.3.7 The Refining Process 348
20.3.8 Casting and Rolling Process 349
20.4 CO2 Emissions Reduction Technology 350
References 351
Chapter 21: Particulate Matter Emission in Iron and Steelmaking Plants 352
21.1 Introduction of Steel Production Process and Particle Emission 352
21.2 Distribution of Particle Emission Sources in Steelworks 354
21.2.1 The Sintering Procedure 354
21.2.2 The Coking Procedure 355
21.2.3 The Iron-Making Procedure 356
21.2.4 The Steelmaking Procedure 356
21.3 Intensity of Smoke and Dust Emission in Steelworks 357
21.4 Control Measures to Reduce Particle Emission in Steelworks 360
21.4.1 Mechanical Precipitator 363
21.4.2 Wet Dust Precipitator 364
21.4.3 Electrostatic Precipitator 364
21.4.4 Filtration Collector 365
21.5 Development Directions of Particle Emission Control in Steelworks 365
21.5.1 Efficient Dust Removal Techniques 366
21.5.2 Fine Particle Coagulation Techniques 367
21.6 Suggestions on Smoke Dust Pollution Control in Steelworks 368
References 369
Chapter 22: Recent Progress and Future Trends of CO2 Breakthrough Iron and Steelmaking Technologies for CO2 Mitigation 370
22.1 Introduction 370
22.2 Key Challenges for CCS Implement in Iron and Steel Industry 371
22.3 CO2 Emission Sources in the Iron and Steel Industry 372
22.4 CO2 Breakthrough Programs 374
22.4.1 Ultra-Low Carbon Dioxide Steelmaking (ULCOS) Program 375
22.4.2 ULCOS CO2 Breakthrough Technologies 375
22.4.2.1 ULCOS Blast Furnace Process (SP1 & SP2)
22.4.2.2 HIsarna Smelter 378
22.4.2.3 Direct-Reduced Iron with Natural Gas (ULCORED) (SP3) 379
22.4.2.4 Direct Electrolysis of Iron Ore (ULCOwin & ULCOlysis) (SP5)
22.4.2.5 Hydrogen-Based Steelmaking (SP4) 381
22.4.2.6 Biomass-Based Steel Production (SP7) 382
22.4.2.7 ULCOS CCS Project (SP6) 383
22.5 Conclusions 384
References 385
Chapter 23: Manganese Emissions From Steelmaking 386
23.1 Introduction 387
23.2 Theoretical Considerations 389
23.2.1 Mechanisms of Dust Formation During Steelmaking 389
23.2.2 Size Distribution and Chemistry 394
23.2.3 Factors Affecting End Blow Mn Content 397
23.3 Results and Discussion 399
23.3.1 Mn Emissions From BOFs 399
23.3.2 Manganese Emission From High Mn Steels and Other Pyrometallurgical Processes 402
23.3.3 Manganese Consumption 404
23.4 Conclusions 404
References 405
Chapter 24: Potential of Best Available and Radically New Technologies for Cutting Carbon Dioxide Emissions in Ironmaking 407
24.1 Introduction 408
24.2 Methodology 409
24.3 Technologies and Scenarios 410
24.3.1 Best Available Energy-Saving Technologies 410
24.3.2 The Breakthrough Technologies 412
24.3.3 Scenarios 415
24.4 Results and Discussion 416
24.5 Conclusions 420
References 420
Chapter 25: Greenhouse Gas Emissions and Energy Consumption of Ironmaking Processes 423
25.1 Introduction 423
25.2 Blast Furnace and Needs for Alternate Ironmaking Processes 424
25.3 Major Alternate Ironmaking Processes 426
25.3.1 Direct Reduction 426
25.3.2 Smelting Reduction 427
25.4 Major Novel Technologies Under Development 429
25.4.1 Flash Ironmaking Technology 429
25.4.1.1 Process Description 429
25.4.1.2 Reduction Kinetics 431
25.4.1.3 Slag Chemistry 435
25.4.1.4 Economic and Environmental Aspects 436
25.4.2 Electrolytic Ironmaking 436
25.5 Methods for Calculating Energy Requirements: Need for Standardization 438
25.5.1 Introduction 438
25.5.2 Energy Requirement in Ironmaking Processes 439
25.5.2.1 General Energy Balance and Total Energy Requirement 439
25.5.2.2 Definitions of Chemical Energy Terms 441
Basis of the Simplified Demonstration 441
25.5.2.3 Chemical Reactions 441
Approach 1: Energy Requirement for Reduction Reaction Based on Oxide Decomposition 442
Approach 2: Energy Requirement Based on Oxide Reaction with Reductant 442
25.5.3 Results 443
25.5.3.1 Material and Energy Flows: System Boundary 443
25.5.3.2 Energy Balances for Ironmaking Processes 443
25.5.4 Discussion 447
25.6 Conclusions 448
References 449
Index 452

Erscheint lt. Verlag 2.9.2016
Zusatzinfo IX, 466 p. 207 illus., 110 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Maschinenbau
Schlagworte blast furnace • electric arc furnace • emissions in ironmaking and steelmaking • greenhouse emissions • iron and steelmaking
ISBN-10 3-319-39529-7 / 3319395297
ISBN-13 978-3-319-39529-6 / 9783319395296
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen - Planung - Montage

von Wilfried Franke; Bernd Platzer

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 38,95