Data-driven Modeling for Diabetes
Springer Berlin (Verlag)
978-3-662-52367-4 (ISBN)
Hypoglycemia Prevention using Low Glucose Suspend Systems.- Linear Modeling and Prediction in Diabetes Physiology.- Adaptive Algorithms for Personalized Diabetes Treatment.- Data-driven modeling of Diabetes Progression.- Nonlinear Modeling of the Dynamic Effects of Free Fatty Acids on Insulin Sensitivity.- Data-driven and Mininal-type Compartmental Insulin-Glucose Models: Theory and Applications.- Pitfalls in model identification: examples from Glucose-Insulin modelling.- Ensemble Glucose Prediction in Insulin-Dependent Diabetes.- Simple parameters describing gut absorption and lipid dynamics in relation to glucose metabolism during a routine oral glucose test.- Simulation Models for In-Silico Evaluation of Closed-Loop Insulin Delivery Systems in Type 1 Diabetes
| Erscheinungsdatum | 15.09.2016 |
|---|---|
| Reihe/Serie | Lecture Notes in Bioengineering |
| Zusatzinfo | X, 237 p. 74 illus., 40 illus. in color. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie |
| Technik | |
| Schlagworte | Applied mathematics • biomedical engineering • Computational Models of Diabetes • Diabetes • Diabetes mellitus • Diagnostic Tool • Engineering • Human Physiology • Implanted Micro-pumps • Long-term Glucose Regulation • Online Glycemic Control • Physiological, Cellular and Medical Topics • Physiology |
| ISBN-10 | 3-662-52367-1 / 3662523671 |
| ISBN-13 | 978-3-662-52367-4 / 9783662523674 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich