Advances in Nanocomposites (eBook)
XII, 266 Seiten
Springer International Publishing (Verlag)
978-3-319-31662-8 (ISBN)
Shaker Meguid is Professor of Mechanical and Industrial Engineering at the University of Toronto. He obtained his Ph.D. in Applied Mechanics from UMIST and taught Applied Mechanics at Oxford University, Cranfield University (England), University of Toronto, Cairo University (Egypt) and Nanyang Technolog.ical University (NTU-Singapore). His research activities include computational mechanics, nanoengineering, advanced and smart composites, fracture mechanics and failure prevention. He has published over 400 papers and is founding Editor-in-Chief of Int. J of Mechanics and Materials in Design.
Shaker Meguid is Professor of Mechanical and Industrial Engineering at the University of Toronto. He obtained his Ph.D. in Applied Mechanics from UMIST and taught Applied Mechanics at Oxford University, Cranfield University (England), University of Toronto, Cairo University (Egypt) and Nanyang Technolog.ical University (NTU-Singapore). His research activities include computational mechanics, nanoengineering, advanced and smart composites, fracture mechanics and failure prevention. He has published over 400 papers and is founding Editor-in-Chief of Int. J of Mechanics and Materials in Design.
Preface 8
Contents 10
Contributors 12
Chapter 1: Multiscale Modeling of Nanoreinforced Composites 14
1.1 Introduction 14
1.2 Molecular Modeling 17
1.2.1 Basics of MD Simulations 18
1.2.2 Modeling of Nanocomposite and Its Constituents 21
1.2.2.1 Modeling of CNTs 22
1.2.2.2 Modeling of Pure Epoxy 25
1.2.2.3 Modeling of CNT-Epoxy Interface 27
1.2.2.4 Modeling of Nanocomposite Containing Agglomerated CNTs 28
1.2.2.5 Modeling of Nanocomposite Containing Wavy CNTs 31
1.2.2.6 CNT Pullout Simulations 33
1.3 ABC Mechanics Technique 36
1.3.1 Basics of ABC Technique 36
1.3.2 Modeling of Nanocomposites 38
1.4 Micromechanics Modeling 43
1.5 Large-Scale Hybrid Monte Carlo FEA Simulations 47
References 48
Chapter 2: Piezoelectric Response at Nanoscale 53
2.1 Introduction 53
2.2 Measurement of Nano-piezoelectricity 55
2.3 Effect of Piezoelectric Surface Layer 58
2.4 Piezoelectricity of Nanostructures 61
2.4.1 Effective Piezoelectric Coefficients 63
2.4.2 Importance of Coefficients 65
2.5 Influence of Piezoelectricity on Mechanical Responses of Nanostructures 68
2.5.1 On the Piezoelectric Potential of GaN Nanotubes 69
2.5.1.1 Material Properties of GaN Nanotubes 69
Determination of the Elastic Property 71
Determination of the Piezoelectric Property 71
Determination of the Dielectric Property 71
2.5.1.2 Core-Surface Model 72
2.5.1.3 Piezoelectric Potential in GaN Nanotubes 74
2.5.2 Piezoelectric Effect on the Intrinsic Dissipation in Oscillating GaN Nanobelts 78
2.6 Conclusion Remarks 84
References 85
Chapter 3: Nanoscale Mechanical Characterization of 1D and 2D Materials with Application to Nanocomposites 89
3.1 Introduction 89
3.2 In Situ Mechanical Characterization of 1D and 2D Nanomaterials 90
3.2.1 MEMS-Based In Situ Characterization 90
3.2.2 In Situ Shear and Peeling Techniques 91
3.2.3 In Situ Raman Spectroscopy Techniques 92
3.3 Probe-Based Mechanical Characterization of Nanocomposite Materials 93
3.3.1 Friction Force Microscopy and Shear Testing 93
3.3.2 Ultrathin Film Deflection and AFM-Based Methods 94
3.3.3 Adhesion Characterization 97
3.4 Indirect Mechanical Characterization of Interfaces Within Nanocomposites 100
3.4.1 Dynamic Mechanical Analysis 100
3.4.2 Micro Tensile Testing, Compression, and Nanoindentation 101
3.5 Perspectives and Future Directions for Research 102
References 103
Chapter 4: Effects of Nanoporosity on the Mechanical Properties and Applications of Aerogels in Composite Structures 108
4.1 Introduction 109
4.2 Types of Aerogels 110
4.2.1 Alumina Aerogel 111
4.2.2 Carbon Aerogel 111
4.2.3 Silica Aerogel 112
4.3 Aerogel Porosity and Properties 113
4.3.1 Surface Nanopores and Their Formation 113
4.3.2 Pore Structure 114
4.3.3 Properties of Silica Aerogel 115
4.3.3.1 Density 115
4.3.3.2 Optical Properties 115
4.3.3.3 Hydrophobicity 115
4.3.3.4 Thermal Conductivity 116
4.3.3.5 Modulus and Strength 116
4.4 Numerical Characterization of Aerogel Structures and Properties 116
4.4.1 Molecular Dynamics: Theory and Formulation 118
4.4.1.1 Interatomic Interaction Potentials 119
4.4.1.2 Thermal Conductivity Simulations 121
4.4.2 Numerical Generation of Aerogel Structures 123
4.4.3 Solid Thermal Conductivity of Silica Aerogels 124
4.4.3.1 Dense Amorphous Silica with BKS Potential 124
4.4.3.2 Silica Aerogel with BKS Potential 125
4.4.3.3 Dense Amorphous Silica with Tersoff Potential 128
4.4.3.4 Silica Aerogel with Tersoff Potential 130
4.5 Conclusions 133
References 134
Chapter 5: Smart Fuzzy Fiber-Reinforced Piezoelectric Composites 138
5.1 Piezoelectric Effects 138
5.2 Introduction to Smart Fuzzy Fiber-Reinforced Composite 139
5.3 Three-Dimensional Effective Properties of 1-3 Piezoelectric Composites 141
5.4 Effective Properties of the SFFRC 146
5.4.1 Micromechanics Model of the PMNC 147
5.4.2 Effective Elastic Properties of the PCFF 151
5.4.3 Effective Properties of the SFFRC 153
5.5 Determination of Volume Fractions 154
5.6 Numerical Example 155
References 160
Chapter 6: Composite Nanowires for Room-Temperature Mechanical and Electrical Bonding 162
6.1 Introduction 162
6.2 Fabrication of Anodic Aluminum Oxide Membrane 164
6.3 Synthesis of Copper/Parylene Composite Nanowires 167
6.4 Synthesis of Copper/Polystyrene Composite Nanowires 169
6.5 Fabrication of Carbon Nanotube Array 171
6.6 Mechanical and Electrical Performances of Nanowire Surface Fasteners 173
6.6.1 Performances of Copper/Parylene Nanowire Surface Fasteners 174
6.6.2 Performances of Copper/Polystyrene Nanowire Surface Fasteners 178
6.6.3 Performances of CNT-Copper/Parylene Nanowire Surface Fasteners 180
6.7 Conclusions 182
References 183
Chapter 7: Recent Developments in Multiscale Thermomechanical Analysis of Nanocomposites 187
7.1 Introduction 187
7.2 Atomistic Thermomechanical Properties of Nanostructures 189
7.3 Results and Discussion 194
7.4 Conclusions 196
References 197
Chapter 8: Magnetoelectric Coupling and Overall Properties of a Class of Multiferroic Composites 199
8.1 Introduction 199
8.2 The Coupled Magneto-Electro-Elastic Constitutive Equations 203
8.3 The Effective Magneto-Electro-Elastic Tensor, L, of the Composite with a Perfect Interface 205
8.4 The Influence of an Imperfect Interface on L 206
8.5 Results and Discussion 207
8.5.1 Effective Properties of CFO-in-BTO and BTO-in-CFO Composites with a Perfect Interface 209
8.5.1.1 The Magnetoelectric Coupling Coefficients, ?33 and ?11 209
8.5.1.2 The Piezoelectric Constants, e31,e33, and e15 211
8.5.1.3 The Piezomagnetic Constants, q31,q33, and q15 212
8.5.1.4 The Electric Permittivity, kappa33 and kappa11 213
8.5.1.5 The Magnetic Permeability, mu33 and mu11 214
8.5.1.6 The Five Elastic Constants, C11,C12,C13,C33, and C44 215
8.5.2 Properties of CFO-in-BTO and BTO-in-CFO Composites with an Imperfect Interface 217
8.5.2.1 The Magnetoelectric Coupling Coefficients, ?33 and ?11, with an Imperfect Interface 217
8.5.2.2 The Piezoelectric Constants, e31,e33, and e15, with an Imperfect Interface 218
8.5.2.3 The Piezomagnetic Constants, q31,q33, and q15, with an Imperfect Interface 220
8.5.2.4 The Electric Permittivity, kappa33 and kappa11, with an Imperfect Interface 221
8.5.2.5 The Magnetic Permeability, mu33 and mu11, with an Imperfect Interface 222
8.5.2.6 The Five Elastic Constants, C11,C12,C13,C33, and C44, with an Imperfect Interface 223
8.5.3 Why Is the Imperfect Interface Model Needed? 225
8.6 Conclusions 226
Appendix 1: The Eight Variants of the Coupled Constitutive Equations 228
Appendix 2: The Determination of the Magneto-Electro-Elastic S-Tensor 230
Appendix 3: Explicit Results for ?33 and ?11 of the 1-3 and 2-2 Multiferroic Composites with a Perfect and an Imperfect Interf... 234
The 1-3 Multiferroic Fibrous Composites with a Perfect Interface 234
The 1-3 Multiferroic Fibrous Composites with an Imperfect Interface 235
The 2-2 Multiferroic Multilayers with a Perfect Interface 238
The 2-2 Multiferroic Multilayers with an Imperfect Interface 239
Appendix 4: The Elastic C44 of the Fibrous Multiferroic Composite and the Purely Elastic Composite 240
References 241
Chapter 9: Snap-Through Buckling of Micro/Nanobeams in Bistable Micro/Nanoelectromechanical Systems 244
9.1 Introduction 244
9.2 Size Effect on Symmetric Snap-Through Buckling of Microbeam 247
9.2.1 Formulation 247
9.2.1.1 Governing Equations 247
9.2.1.2 Influence of Intermolecular Forces 253
9.2.1.3 One Degree of Freedom Reduced-Order Model 255
9.2.2 Results and Discussions 257
9.2.2.1 Influence of Initial Arch Rise on Snap-Through Behavior 257
9.2.2.2 Size and Fringing Field Effects on Necessary Snap-Through Criterion 258
9.3 Surface Effects on Asymmetric Bifurcation of Nanobeam 261
9.3.1 Formulation 261
9.3.1.1 Surface Effects 261
9.3.1.2 Governing Equations 262
9.3.1.3 Two Degrees of Freedom Reduced-Order Model 264
9.3.2 Results and Discussions 265
9.3.2.1 Influence of Initial Arch Rise on Asymmetric Bifurcation Behavior 265
9.3.2.2 Surface Effects on Necessary Symmetry-Breaking Criterion 266
9.4 Conclusions 269
References 270
Index 273
| Erscheint lt. Verlag | 17.6.2016 |
|---|---|
| Zusatzinfo | XII, 266 p. 156 illus., 127 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Themenwelt | Technik ► Maschinenbau |
| Schlagworte | Atomistic based Continuum • Characterization of Nanomaterials • Electrically Conducting Polymers • Modeling and Simulation of Nanocomposites • Nanocomposites • Self-health Monitoring • Tailoring of Polymers |
| ISBN-10 | 3-319-31662-1 / 3319316621 |
| ISBN-13 | 978-3-319-31662-8 / 9783319316628 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich