Wavelength Division Multiplexing for Short-Range Communication Over 1 mm Step-Index Polymer Optical Fiber
Seiten
2016
|
1. Aufl.
Cuvillier Verlag
978-3-7369-9204-7 (ISBN)
Cuvillier Verlag
978-3-7369-9204-7 (ISBN)
- Keine Verlagsinformationen verfügbar
- Artikel merken
In short-range communication 1 mm step-index polymer optical fiber (SI-POF) established itself as a reasonable alternative to the traditional data communication media. The commercial systems with SI-POF use a single wavelength for data transmission. This thesis investigates the utilization of several optical carriers for parallel transmission of data channels over a single fiber, known as wavelength division multiplexing (WDM), in order to increase the capacity of SI-POF link. The focus of research is on (1) demultiplexing techniques for SI-POF, (2) high-speed WDM transmission over SI-POF and (3) channel allocation for POF WDM systems.
For WDM an optical demultiplexer is a key component. The thesis concentrates on the demultiplexing techniques employing thin-film interference filters and a concave diffraction grating. A four-channel interference filter-based SI-POF demultiplexer was realized using a precisely adjustable opto-mechanical setup. It provided low IL (less than 5.7 dB) and high channel isolation (more than 30 dB), outperforming other interference filter-based SI-POF demultiplexers reported so far. Theoretical and experimental analysis of an already realized SI-POF demultiplexer based on a concave diffraction grating was carried out. The results confirmed the wavelength separating function of the device. However, a poor grating quality due to unstable parameters of the ruling process led to high IL (> 20 dB) and low channel isolation (< 15 dB). To demonstrate experimentally the feasibility and potential of a high-speed POF WDM concept, a four-channel laser diode-based data transmission setup employing the interference filter-based demultiplexer was realized. It was shown that POF WDM with lower channel rates and simple transmission technique could provide aggregate bit rates comparable to those achieved with the single-wavelength systems that used more advanced transmission techniques but required more signal processing.
In addition, the record 14.77 Gb/s and 8.26 Gb/s data rates employing the offline-processed discrete multitone modulation were demonstrated over 50 m and 100 m SI POF, respectively. Compared to the fastest single-wavelength systems, two times higher transmission capacities were achieved.
Finally, the channel allocation for POF WDM systems was investigated. It was shown that the extension of ITU-T G.694.2 Coarse WDM grid into the visible spectrum, with 15 channels and 20 nm channel spacing, is best suited to support WDM applications over SI-POF.
For WDM an optical demultiplexer is a key component. The thesis concentrates on the demultiplexing techniques employing thin-film interference filters and a concave diffraction grating. A four-channel interference filter-based SI-POF demultiplexer was realized using a precisely adjustable opto-mechanical setup. It provided low IL (less than 5.7 dB) and high channel isolation (more than 30 dB), outperforming other interference filter-based SI-POF demultiplexers reported so far. Theoretical and experimental analysis of an already realized SI-POF demultiplexer based on a concave diffraction grating was carried out. The results confirmed the wavelength separating function of the device. However, a poor grating quality due to unstable parameters of the ruling process led to high IL (> 20 dB) and low channel isolation (< 15 dB). To demonstrate experimentally the feasibility and potential of a high-speed POF WDM concept, a four-channel laser diode-based data transmission setup employing the interference filter-based demultiplexer was realized. It was shown that POF WDM with lower channel rates and simple transmission technique could provide aggregate bit rates comparable to those achieved with the single-wavelength systems that used more advanced transmission techniques but required more signal processing.
In addition, the record 14.77 Gb/s and 8.26 Gb/s data rates employing the offline-processed discrete multitone modulation were demonstrated over 50 m and 100 m SI POF, respectively. Compared to the fastest single-wavelength systems, two times higher transmission capacities were achieved.
Finally, the channel allocation for POF WDM systems was investigated. It was shown that the extension of ITU-T G.694.2 Coarse WDM grid into the visible spectrum, with 15 channels and 20 nm channel spacing, is best suited to support WDM applications over SI-POF.
| Erscheinungsdatum | 08.10.2016 |
|---|---|
| Reihe/Serie | Lehrstuhl für Kommunikationstechnik Hochschule Harz (FH) ; 14 |
| Sprache | englisch |
| Einbandart | Paperback |
| Themenwelt | Technik ► Elektrotechnik / Energietechnik |
| Technik ► Nachrichtentechnik | |
| Schlagworte | Communication • Demultiplexer • Multiplexer • Optical fiber • Optical fiber communication • polymer optical fiber • spectral grids • visible diode lasers • Wavelength • Wavelength division multiplexing |
| ISBN-10 | 3-7369-9204-1 / 3736992041 |
| ISBN-13 | 978-3-7369-9204-7 / 9783736992047 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Grundlagen, Systemtechnik und Analysen ausgeführter Beispiele …
Buch | Softcover (2025)
Springer Vieweg (Verlag)
CHF 55,95
Wegweiser für Elektrofachkräfte
Buch | Hardcover (2024)
VDE VERLAG
CHF 67,20