Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Implantable Medical Electronics (eBook)

Prosthetics, Drug Delivery, and Health Monitoring
eBook Download: PDF
2015
453 Seiten
Springer International Publishing (Verlag)
978-3-319-25448-7 (ISBN)

Lese- und Medienproben

Implantable Medical Electronics - Vinod Kumar Khanna
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is a comprehensive, interdisciplinary resource for the latest information on implantable medical devices, and is intended for graduate students studying electrical engineering, electronic instrumentation, and biomedical engineering. It is also appropriate for academic researchers, professional engineers, practicing doctors, and paramedical staff. Divided into two sections on Basic Concepts and Principles, and Applications, the first section provides an all-embracing perspective of the electronics background necessary for this work. The second section deals with pacing techniques used for the heart, brain, spinal cord, and the network of nerves that interlink the brain and spinal cord with the major organs, including ear and eye prostheses.

The four main offshoots of implantable electronics, which this book discusses, are:
  • The insertion of an implantable neural amplifier for accurate recording of neural signals for neuroengineering studies
  • The use of implantable pulse generators for pacing the activities of diseased organs
  • The use of implantable sensors for observing the influence of therapy and monitoring a patient's biological parameters
  • The use of drug delivery systems to supervise the supply of accurate doses of medicine to affected parts

Readers will also find chapters on the ess
entials of clocking and timing circuits, pulse generator circuits, neural amplifiers, batteries, biomaterials and biocompatibility, and more. Unique to this book is also a chapter on cyber security and confidentiality concerns with implants. End-of-chapter questions and exercises help readers apply the content to practical use, making this an ideal book for anyone wishing to learn more about implantable devices.


Vinod Kumar Khanna received the Ph.D. degree in physics from Kurukshetra University, Kurukshetra (Haryana), India, in 1988. From 1977 to 1979, he was a Research Assistant with the Physics Department, Lucknow University. He joined the solid-state devices division of Council of Scientific and Industrial Research (CSIR)-Central Electronics Engineering Research Institute (CEERI), Pilani in April, 1980. During his tenure of more than 34 years of service at CSIR-CEERI, he worked on various research and development projects on thin-film aluminum oxide humidity sensor, power semiconductor devices (high-current and high-voltage rectifier, high-voltage TV deflection transistor, power Darlington transistor, fast switching thyristor, power DMOSFET and IGBT), PIN diode neutron dosimeter and PMOSFET gamma ray dosimeter, ion-sensitive field-effect transistor (ISFET), microheater-embedded gas sensor, capacitive MEMS ultrasonic transducer, and other MEMS devices. He superannuated in November 2014 as Chief Scientist & Head, MEMS & Microsensors Group, and Professor, AcSIR (Academy of Scientific & Innovative Research). Presently, he is working as an Emeritus Scientist, CSIR and Emeritus Professor, AcSIR. His research interests are micro- and nanosensors, and power semiconductor devices. He is a fellow of the Institution of Electronics & Telecommunication Engineers (IETE), India. He is a life member of Indian Physics Association (IPA), Semiconductor Society (India), and Indo-French Technical Association (IFTA).

Dr. Khanna has published 8 previous books, 6 chapters in edited books, and 175 research papers in national/international journals and conference proceedings; he holds two US and two Indian patents.

Vinod Kumar Khanna received the Ph.D. degree in physics from Kurukshetra University, Kurukshetra (Haryana), India, in 1988. From 1977 to 1979, he was a Research Assistant with the Physics Department, Lucknow University. He joined the solid-state devices division of Council of Scientific and Industrial Research (CSIR)–Central Electronics Engineering Research Institute (CEERI), Pilani in April, 1980. During his tenure of more than 34 years of service at CSIR-CEERI, he worked on various research and development projects on thin-film aluminum oxide humidity sensor, power semiconductor devices (high-current and high-voltage rectifier, high-voltage TV deflection transistor, power Darlington transistor, fast switching thyristor, power DMOSFET and IGBT), PIN diode neutron dosimeter and PMOSFET gamma ray dosimeter, ion-sensitive field-effect transistor (ISFET), microheater-embedded gas sensor, capacitive MEMS ultrasonic transducer, and other MEMS devices. He superannuated in November 2014 as Chief Scientist & Head, MEMS & Microsensors Group, and Professor, AcSIR (Academy of Scientific & Innovative Research). Presently, he is working as an Emeritus Scientist, CSIR and Emeritus Professor, AcSIR. His research interests are micro- and nanosensors, and power semiconductor devices. He is a fellow of the Institution of Electronics & Telecommunication Engineers (IETE), India. He is a life member of Indian Physics Association (IPA), Semiconductor Society (India), and Indo-French Technical Association (IFTA).Dr. Khanna has published 8 previous books, 6 chapters in edited books, and 175 research papers in national/international journals and conference proceedings; he holds two US and two Indian patents.

Dedication 6
Preface 8
About this Book 8
Why This Book Was Written? 9
For Whom This Book Was Written? 9
Layout of the Book 9
Acknowledgments 12
Acronyms, Abbreviations, and Symbols 14
Contents 22
About the Author 34
Chapter 1: Introduction, Scope, and Overview 35
1.1 Electronics 35
1.2 Medical Electronics 35
1.3 Implantable Medical Electronics 35
1.4 Organization of the Book 36
1.5 Discussion and Conclusions 41
Part I: Basic Concepts and Principles 44
Chapter 2: Diagnostic and Therapeutic Roles of Implantable Devices in the Human Electrical Machine: A Quick Primer 45
2.1 Introduction 45
2.2 Medical Devices and Medicinal Products 46
2.3 Medical Device Classification 47
2.4 Noninvasive and Invasive Medical Procedures and Devices 48
2.5 Implantable Medical Devices 49
2.6 Passive and Active Implantable Devices 49
2.7 Active Implantable Devices 50
2.7.1 Implantable Neural Amplifiers 50
2.7.2 Implantable Electronic Systems for Electrical Stimulation 50
2.7.3 Implantable Electronic Systems for Continuous Health Status Monitoring 50
2.7.4 Implantable Drug Delivery Systems 51
2.8 Brief Historical Background 52
2.9 Electrical System of the Human Body 52
2.10 Bioelectricity 53
2.10.1 Generation of Bioelectricity by Cells 54
2.10.2 Membrane Potential 54
2.10.3 Action Potential 56
2.11 Discussion and Conclusions 59
References 60
Chapter 3: Generic Implant Architecture and Organization 62
3.1 Introduction 62
3.2 External Part of the Implantable Device 65
3.2.1 Induction Charger 65
3.2.2 Nonresonant and Resonant Coupling 66
3.2.3 Antenna 67
3.2.4 Transceiver 67
3.2.5 USB Port 67
3.3 The Inner Structural Layout of the Implant 67
3.3.1 The Secondary Coil 68
3.3.2 Rectifier, Filter, and Chargeable Battery 68
3.3.3 Voltage Regulator 69
3.3.3.1 Linear Regulator 69
3.3.3.2 Switch-Mode Power Supply 70
3.3.3.3 Bandgap Voltage Reference Circuit 71
3.3.4 Power Saving and Economization Unit 74
3.3.5 Battery-Less Implant 75
3.4 Data Telemetry Unit 75
3.5 Central Processing Unit 77
3.6 Memory Storage 78
3.7 Analog Front End 80
3.8 Electronic Block or Feature Grouping 82
3.9 Discussion and Conclusions 83
References 85
Chapter 4: Dilemmas and Enigmas of Implantable IC Design 86
4.1 Introduction 86
4.2 CMOSFET: The Digital Workhorse 87
4.2.1 CMOS Processes 87
4.2.2 CMOS Combinational Logic 87
4.2.3 CMOS Advantages 89
4.3 Single-Chip Versus Multiple-Chip Design 91
4.4 Speed and Threshold Voltage Trade-Off 91
4.5 Matching the Threshold Voltages of N- and P-Channel Devices 92
4.6 Rise of Leakage Currents in Deep Submicron Transistors 92
4.6.1 Gate-Induced Drain Leakage 92
4.6.2 Leakage Current Flow Through the Gate Oxide 93
4.7 Reliability Degradation of Deep Submicron Transistors 93
4.7.1 Stress-Induced Leakage Current and Soft Breakdown 93
4.7.2 Negative-Bias Temperature Instability 94
4.7.3 CMOSFET Noise Sources 96
4.7.3.1 Thermal Noise 96
4.7.3.2 Flicker Noise 96
4.7.3.3 Shot Noise 97
4.7.3.4 Generation–Recombination Noise 98
4.7.3.5 Popcorn Noise 98
4.8 Input DC Offset 98
4.9 Drain-Induced Barrier Lowering 99
4.10 Channel Lengthening 100
4.11 Revision of Transistor Models for Implantable Electronics 102
4.12 Analog Signal Processing 102
4.13 Electrostatic Discharge Failure Limit and Protection 103
4.14 Digital Signal Processing 103
4.15 Memory Design Artifices 104
4.15.1 Sense Amplifiers 104
4.15.1.1 Voltage-Mode Sense Amplifier 105
4.15.1.2 Current-Mode Sense Amplifier 106
4.15.1.3 Charge Transfer Sense Amplifier 107
4.15.2 Soft Errors 107
4.16 IC Testing and Evaluation 107
4.17 Discussion and Conclusions 108
References 110
Chapter 5: Neural Stimulation and Charge Balancing Approaches 111
5.1 Introduction 111
5.2 Monopolar and Bipolar Electrodes 111
5.3 Monophasic and Biphasic Waveforms 113
5.4 Functional Circuit Blocks 115
5.4.1 CMOS Switch 115
5.4.2 Digital-to-Analog Converter 115
5.4.3 Analog-to-Digital Converter 119
5.4.4 Voltage and Current Sources 122
5.4.5 Current Source vs. Current Sink 122
5.4.6 Current Mirror 122
5.4.7 Voltage-to-Current Converter 124
5.4.8 Voltage Multiplier 126
5.4.9 Boost Converter 128
5.4.10 Timer Circuit 129
5.4.11 Driver Circuit 129
5.5 Current-, Voltage-, and Charge-Mode Stimulation 130
5.5.1 Current-Mode Stimulation 130
5.5.2 Voltage-Mode Stimulation 131
5.5.3 Charge-Mode Stimulation 132
5.6 Charge Balancing 133
5.6.1 Passive Charge Balancing 133
5.6.1.1 Blocking Capacitor 133
5.6.1.2 Short-Circuiting of Electrodes 134
5.6.2 Active Charge Balancing 135
5.6.2.1 Charge Surveillance 135
5.6.2.2 Pulse Insertion 135
5.7 Discussion and Conclusions 135
References 137
Chapter 6: Implant Clocking and Timing Circuits 138
6.1 Introduction 139
6.2 Clock Generators 139
6.3 Oscillator Circuits 140
6.3.1 Crystal Oscillator (XO) 140
6.3.2 Resistance–Capacitance Oscillator 141
6.3.3 Crystal-Based CMOS Square Wave Oscillators 143
6.3.4 Multivibrator Circuits Using Logic Gates 145
6.3.4.1 Monostable Multivibrator 146
6.3.4.2 Astable Multivibrator 147
6.3.4.3 Bistable Multivibrator 148
6.4 Timer ICs and Timing Circuits 149
6.4.1 Block Diagram 150
6.4.2 Pin Diagram 151
6.4.3 Monostable Mode for Timer or Time Delay Function 151
6.4.4 Monostable Mode for Frequency Division 153
6.4.5 Monostable Mode for Missing Pulse Detection 153
6.4.6 Pulse-Width Modulation 154
6.4.7 Astable Mode for Pulse Generation 155
6.4.8 Pulse Amplitude Modulation 159
6.4.9 Pulse Position Modulation 160
6.5 Discussion and Conclusions 161
References 162
Chapter 7: Electrostimulation Pulse Generators 163
7.1 Introduction 163
7.2 Electrical Pulse and Pulse Parameters 163
7.3 Pulse Generator 166
7.4 Power Supply 167
7.5 Pulse Timing Control Unit 168
7.6 Timer IC-Based Pulse Generator 169
7.7 Microcontroller-Based Pulse Generator 170
7.7.1 Why Microcontroller-Based Pulse Generators? 170
7.7.2 User Interfaces 172
7.7.3 Main Tasks of Microcontroller 172
7.7.4 Frequency Division by Counters 173
7.7.5 Changing Other Parameters of the Pulses 174
7.7.6 FET-Based Methods of Amplitude Control 176
7.8 Discussion and Conclusions 177
References 178
Chapter 8: Biomaterials for Implants 180
8.1 Aims and Scope of Biomaterials 180
8.2 Defining Biocompatibility 181
8.3 Responses of Tissues to Materials 182
8.4 Metallic Biomaterials 185
8.4.1 Commonly Used Materials 185
8.4.2 Corrosion 185
8.4.3 Processing of Metals 186
8.4.4 Surface Treatment 186
8.4.5 Surface Coating 186
8.4.6 Cleaning and Sterilization 186
8.4.7 Biodegradable Metals 187
8.5 Bioceramics 187
8.5.1 Types of Ceramics 187
8.5.2 Dental Ceramics 187
8.5.3 Corrosion of Ceramics 188
8.5.4 Toxic Effects 188
8.6 Biocompatible Polymeric Materials 188
8.6.1 Need of Polymeric Materials 188
8.6.2 Special Properties of Polymers 189
8.6.3 Polymer Integration 190
8.7 Discussion and Conclusions 190
References 192
Chapter 9: Batteries for Implants 194
9.1 Introduction 194
9.2 Lithium/Iodine–Polyvinylpyridine Battery 197
9.3 Lithium–Manganese Dioxide Battery 199
9.4 Lithium/Carbon Monofluoride Battery 202
9.5 Lithium/Carbon Monofluoride–Silver Vanadium Oxide Hybrid Battery 203
9.6 High-Rate Lithium/Silver Vanadium Oxide Battery 204
9.7 High-Rate Lithium–Manganese Dioxide Battery 205
9.8 High-Rate Lithium/Carbon Monofluoride–Silver Vanadium Oxide Hybrid Battery 205
9.9 Secondary Lithium-Ion Battery 205
9.10 Discussion and Conclusions 207
References 209
Chapter 10: Wireless Communications and Powering of Implants 211
10.1 Introduction 211
10.2 Powering the Implant 212
10.2.1 Through Percutaneous Leads 212
10.2.2 Wireless Charging 212
10.3 Inductive Charging 214
10.3.1 Frequencies Used 214
10.3.2 Coupling and Loading Variations 215
10.3.3 Design Considerations 215
10.3.4 Applications 216
10.4 Resonance Charging 216
10.5 Radio Charging 216
10.5.1 Similarity to Radio Transmission and Reception 216
10.5.2 Safety Limits 216
10.6 Biotelemetry 218
10.6.1 Active Telemetry 218
10.6.2 Passive Telemetry 218
10.7 Data Telemetry Uplink: From the Implanted Medical Device to its External Part 219
10.7.1 Digital Modulation Techniques: A Quick Relook 219
10.7.2 Load-Shift Keying and Multilevel Load-Shift Keying 222
10.7.3 Auxiliary-Carrier Load-Shift Keying 225
10.7.4 Adaptive Control Load-Shift Keying 226
10.7.5 Passive Phase-Shift Keying 227
10.7.6 Pulse Harmonic Modulation 227
10.8 Data Telemetry Downlink: From the External Part to the Implanted Medical Device 228
10.8.1 Amplitude-Shift Keying 228
10.8.2 Frequency-Shift Keying 229
10.8.3 Phase-Shift Keying 229
10.9 Discussion and Conclusions 230
References 232
Chapter 11: Cyber Security and Confidentiality Concerns with Implants 234
11.1 Introduction 234
11.2 Apprehensions of Patients Receiving Implants 235
11.3 Security Requirements 236
11.4 Causes of Security Breaches 236
11.4.1 Deliberate Breaches 236
11.4.2 Unintentional Breaches 237
11.5 Types of Adversaries 237
11.6 Design Principles for Implant Security 238
11.7 Expository Examples of Security Breach Possibilities 240
11.7.1 Hijacking an Open-Loop Procedure: The Insulin Infusion Pump 240
11.7.2 Security Analysis of a Closed-Loop System: The Implantable Cardioverter Defibrillator 242
11.7.3 Security and Privacy of Implantable Biosensors Used for Data Acquisition 243
11.8 Conflict of Security with Safety, Efficiency, and Usability 245
11.9 Negative Aspects of Security Scheme 245
11.10 Protection Without Device Modification 246
11.11 Discussion and Conclusions 247
References 249
Part II: Applications 251
Chapter 12: Neural Amplifier Circuits in Implants 252
12.1 Introduction 252
12.2 Clock-Based Amplifiers 253
12.2.1 Switched-Biasing Amplifier 253
12.2.2 Chopper-Stabilized Amplifier 255
12.2.2.1 Chopper Amplification Concept 255
12.2.2.2 Conventional Chopper-Stabilized Amplifier 255
12.2.2.3 Wide Bandwidth Chopper-Stabilized Amplifier 258
12.2.3 Auto-zeroing Amplifier 259
12.3 Zero-Drift Amplifiers 260
12.4 Continuous-Time Amplifier Circuits 263
12.4.1 Operational Transconductance Amplifier 263
12.4.2 Comparison of OTA with Bipolar Transistor 264
12.4.3 OTA Versus Operational Amplifier 265
12.4.4 OTA Operation 265
12.4.5 Single OTA-Stage CMOS Amplifier 266
12.4.6 Low Input Capacitance Amplifier 268
12.5 Discussion and Conclusions 268
References 269
Chapter 13: Implantable Sensors 271
13.1 Introduction 271
13.2 Implantable Blood Pressure Sensor 272
13.2.1 Capacitive Pressure Sensors 273
13.2.2 Accelerometers 273
13.2.3 SAW Sensors 275
13.3 Predicaments of Implantable Biosensors 277
13.3.1 Foreign Body Response 277
13.3.2 Oxygen Shortfall 278
13.3.3 Enzyme Stability 278
13.4 Implantable Blood Gas Sensors 279
13.5 Artificial Pancreas Concept 281
13.5.1 Metabolite Sensors 281
13.5.2 Treatment Options for Diabetes 281
13.5.3 Subcutaneously Implanted Glucose Biosensor 282
13.6 NO Detection-Based Implantable Inflammation Sensor 283
13.7 Discussion and Conclusions 284
References 285
Chapter 14: Cardiac Pacemakers 288
14.1 Introduction 289
14.2 Natural and Artificial Pacemakers of the Heart 289
14.3 Unipolar and Bipolar Stimulation 292
14.4 The Electrocardiogram Waveform 293
14.5 Arrhythmias and Pacemaker Indications 295
14.6 Types of Artificial Pacemakers 296
14.7 Pacemaker Codes 299
14.8 Fitting the Pacemaker 301
14.8.1 Surgery for Pacemaker 301
14.8.2 Post-operation Follow-Ups 302
14.9 First Pacemaker Implantation 302
14.10 Evolution of Pacemaker Electronics 304
14.10.1 Pulse Generators 304
14.10.2 Pacemaker Miniaturization 305
14.11 Software-Based Pacemaker Architecture 306
14.12 Programmability and Telemetry 307
14.13 Rate Responsiveness 307
14.14 Automatic Safety/Backup Features 308
14.15 Pacing Leads and Connectors 308
14.15.1 Lead Construction and Design 308
14.15.2 Lead Fixation Mechanisms 309
14.15.3 Lead Materials 310
14.16 Pacemaker Myths and Misconceptions 310
14.17 Discussion and Conclusions 311
References 313
Chapter 15: Implantable Cardioverter Defibrillators 314
15.1 Introduction 314
15.1.1 Explanation of VT and VF 315
15.1.2 Cardioversion 316
15.2 Difference Between ICD and Pacemaker 316
15.3 Necessity of ICD 317
15.4 Historical Background 318
15.5 ICD Construction 319
15.6 Epicardial versus Endocardial (Transvenous) Lead Systems 319
15.7 Arrhythmia Detection 321
15.8 Detection Zones 323
15.9 Algorithms for Detection of Arrhythmias 323
15.9.1 Algorithms for Single-Chamber ICDs 323
15.9.2 Algorithms for Dual-Chamber ICDs 324
15.10 Therapies Administered 324
15.11 Postimplantation Patient Follow-Up and Monitoring 325
15.12 Discussion and Conclusions 326
References 327
Chapter 16: Deep Brain Stimulation 329
16.1 Introduction 329
16.2 Movement Disorders 331
16.2.1 Parkinson’s Disease (PD) 331
16.2.2 Tremor 332
16.2.3 Dystonia 333
16.3 Lesioning Procedures and the Need of DBS 333
16.3.1 Pallidotomy, Thalamotomy, and Subthalamotomy 333
16.3.2 Advent of DBS 334
16.3.3 DBS Versus Lesioning 336
16.4 Patient Selection/Exclusion Criteria for DBS 337
16.5 DBS Surgical Methodology 339
16.6 The DBS System 340
16.7 Mechanisms of DBS Action 341
16.8 Risks of DBS Surgery 344
16.9 DBS for Psychiatric and Neurological Disorders 344
16.9.1 Major Depression 344
16.9.2 Obsessive–Compulsive Disorder 345
16.9.3 Alzheimer’s Disease 346
16.10 Discussion and Conclusions 346
References 348
Chapter 17: Epidural Spinal Cord Stimulation 350
17.1 Introduction and Historical Glimpses 350
17.2 Epidural Space and Epidural Anesthesia 351
17.3 SCS Equipment 353
17.3.1 The Hardware and the Electrodes 353
17.3.2 Implantable Power Sources 355
17.3.2.1 The Conventional Non-rechargeable Unit 355
17.3.2.2 Rechargeable Unit 356
17.3.2.3 Radio-Frequency Unit 356
17.4 Mechanisms of Action 356
17.5 SCS Indications 357
17.6 Discussion and Conclusions 358
References 359
Chapter 18: Vagus Nerve Stimulation 360
18.1 Introduction 360
18.2 Epileptic Seizures 360
18.3 Vagus Nerve Stimulation for Medically Refractory Epilepsy 361
18.4 Promising Areas of VNS Therapy 362
18.5 Anatomical Basis of VNS 362
18.6 The VNS System 365
18.7 Implantation of VNS System 366
18.8 VNS in Depression 367
18.9 Reasons for Antidepressive Action of VNS 367
18.10 Drawbacks of VNS for Depression Treatment 368
18.11 VNS for Obesity Treatment 369
18.12 VNS for Rheumatoid Arthritis 369
18.13 Discussion and Conclusions 370
References 371
Chapter 19: Diaphragmatic/Phrenic Nerve Stimulation 373
19.1 Introduction 373
19.2 Respiration, Phrenic Nerves, and Diaphragm 374
19.3 Diaphragm Pacing Versus Mechanical Ventilation 377
19.4 Indications for D/P Nerve Stimulator 378
19.5 The Pacing System 379
19.6 Surgical Procedure 381
19.7 Training, Rehabilitation, and Precautions 381
19.8 Discussion and Conclusions 382
References 383
Chapter 20: Sacral Nerve Stimulation 384
20.1 Introduction 384
20.2 The Urinary System and Bladder Control Problems 387
20.3 Indications for SNS 388
20.4 Diagnosis and Suitability 389
20.5 The SNS System and Implantation Procedure 390
20.5.1 The SNS System 390
20.5.2 Stages of the Implantation Procedure 390
20.5.2.1 Stage I: Minimally Invasive Screening Test 392
20.5.2.2 Stage II: Permanent Implantation 392
20.5.3 Stimulation Parameters 393
20.6 Discussion and Conclusions 393
References 394
Chapter 21: Cochlear Implants 396
21.1 Introduction 396
21.2 Causes of Hearing Loss 397
21.2.1 Conductive Hearing Loss 397
21.2.2 Sensorineural Hearing Loss 398
21.2.3 Mixed Hearing Loss 399
21.3 CI Versus Hearing Aid 399
21.4 Acoustic Versus Electrical Hearing 400
21.5 Components of the Device 402
21.5.1 External Functionality 402
21.5.2 Internal Functionality 404
21.6 Candidacy for Cochlear Implantation 405
21.6.1 Presurgery 405
21.6.2 Surgical Procedure 406
21.6.3 Postsurgery 406
21.7 Discussion and Conclusions 406
References 407
Chapter 22: Retinal Prostheses 409
22.1 Introduction 409
22.2 Role of Retina in Vision 410
22.3 Vision Impairment and Its Remedial Schemes 412
22.3.1 Age-Related Macular Degeneration 413
22.3.2 Retinitis Pigmentosa 413
22.3.3 Evolution of the Concept of Electrical Stimulation of the Retina 413
22.4 Two Kinds of Retinal Implant 414
22.4.1 Subretinal Implant 414
22.4.2 Epiretinal Implant 417
22.5 Argus II Retinal System 419
22.6 Alpha IMS Retinal Implant 419
22.7 Optimal Candidates for Retinal Implants 422
22.8 Discussion and Conclusions 422
References 424
Chapter 23: Drug Delivery Implants 425
23.1 Introduction 425
23.2 Conventional Drug Delivery Systems 426
23.2.1 Oral Method 426
23.2.2 Nasal Method 426
23.2.3 Pulmonary Method 426
23.2.4 Transdermal Method 428
23.2.4.1 Advantages of Transdermal Method 428
23.2.4.2 Limitations of Transdermal Method 429
23.2.5 Intravenous Method 429
23.2.5.1 Intravenous Method for Fast Drug Delivery 429
23.2.5.2 Intravenous Method for Slow Drug Delivery 430
23.2.5.3 IV Push and IV Infusion 430
23.2.5.4 Risks of Intravenous Medication 430
23.2.5.5 Limitations of Intravenous Medication 431
23.2.6 Intramuscular Method 431
23.3 Advantages of IDDSs over Existing Methods 431
23.4 Disadvantages of IDDSs over Existing Methods 434
23.5 Desirable Properties of Effective Subcutaneous IDDSs 435
23.6 Biodegradation-Based IDDS Classification 436
23.6.1 Biodegradable IDDSs 437
23.6.2 Nonbiodegradable IDDSs 437
23.7 Passive and Active IDDSs 437
23.8 Micro- and Nanoscale IDDSs 438
23.8.1 Microreservoir-Based IDDSs 439
23.8.1.1 Passive Devices 440
23.8.1.2 Actively Driven Devices 441
23.9 Infusion Micropumps for Drug Delivery 442
23.9.1 Principles of Passive Micropumps 443
23.9.1.1 Osmotic Principle 443
23.9.1.2 Spring-Powering Principle 444
23.9.2 Principles of Active Micropumps 445
23.9.2.1 Electrostatic Principle 447
23.9.2.2 Piezoelectric Principle 448
23.9.2.3 Electrochemical Principle 449
23.9.2.4 Thermal Principle 449
23.10 Discussion and Conclusions 450
References 452
Index 454

Erscheint lt. Verlag 10.12.2015
Zusatzinfo XXXIII, 453 p. 134 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Medizin / Pharmazie
Technik Maschinenbau
Schlagworte BIO-MEMS • Cochlear and Opthalmic Implants • Immunoisolation • Implantable Drug Delivery Devices • implantable electronics • Medical Electronics • micropumps • nanoparticles • Neurostimulators • pharmacotherapy
ISBN-10 3-319-25448-0 / 3319254480
ISBN-13 978-3-319-25448-7 / 9783319254487
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen - Planung - Montage

von Wilfried Franke; Bernd Platzer

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 38,95