Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Design of Experiments for Reinforcement Learning

Buch | Hardcover
XIII, 191 Seiten
2014
Springer International Publishing (Verlag)
9783319121963 (ISBN)

Lese- und Medienproben

Design of Experiments for Reinforcement Learning - Christopher Gatti
CHF 149,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This thesis takes an empirical approach to understanding of the behavior and interactions between the two main components of reinforcement learning: the learning algorithm and the functional representation of learned knowledge. The author approaches these entities using design of experiments not commonly employed to study machine learning methods. The results outlined in this work provide insight as to what enables and what has an effect on successful reinforcement learning implementations so that this learning method can be applied to more challenging problems.

Christopher Gatti received his PhD in Decision Sciences and Engineering Systems from Rensselaer Polytechnic Institute (RPI). During his time at RPI, his work focused on machine learning and statistics, with applications in reinforcement learning, graph search, stem cell RNA analysis, and neuro-electrophysiological signal analysis. Prior to beginning his graduate work at RPI, he received a BSE in mechanical engineering and an MSE in biomedical engineering, both from the University of Michigan. He then continued to work at the University of Michigan for three years doing computational biomechanics focusing on the shoulder and knee. He has been a gymnast since he was a child and is currently an acrobat for Cirque du Soleil.

Introduction.- Reinforcement Learning. Design of Experiments.- Methodology.- The Mountain Car Problem.- The Truck Backer-Upper Problem.- The Tandem Truck Backer-Upper Problem.- Appendices.

Erscheint lt. Verlag 8.12.2014
Reihe/Serie Springer Theses
Zusatzinfo XIII, 191 p. 46 illus., 25 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 479 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte Kriging Covariance Functions • Reinforcement Learning Algorithm • Reinforcement Learning Algorithm • Response Surface Metamodeling • Sequential CART • Stochastic Kriging
ISBN-13 9783319121963 / 9783319121963
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20