Differential Equations And Control Theory
Crc Press Inc (Verlag)
978-0-8247-0681-4 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Sergiu Aizicovici (Ohio University) (Edited by) , Nicolae H. Pavel (Ohio University, Athens, USA) (Edited by)
Existence and uniqueness of solutions to a second order nonlinear nonlocal hyperbolic equation; fully nonlinear programming problems with closed range operators; internal stabilization of the diffusion equation; flow-invariant sets with respect to Navier-Stokes equation; numerical approximation of the Ricatti equation via fractional steps method; asymptotic analysis of the telegraph system with nonlinear boundary conditions; global existence for a class of dispersive equations; viable domains for differential equations governed by caratheodory perturbations of nonlinear m-accretive operators; almost periodic solutions to neural functional equations; the one-dimensional wave equation with Wentzell boundary conditions; on the longterm behaviour of a parabolic phase-field model with memory; on the Kato classes of distributions and BMO-classes; the global solution set for a class of semilinear problems; optimal control and algebraic Ricatti equations under singular estimates for eAtB in the absence of analyticity; the stable case; solving identification problems for the wave equation by optimal control methods; singular perturbations and approximations for integrodifferential equations; remarks on impulse control problems for the stochastic Navier-Stokes equations; recent progress on the Lavrentiev phenomenon, with applications; abstract eigenvalue problem for monotone operators and applications to differential operators; implied volatility for American options via optimal control and fast numerical solutions of obstacle problems; first order necessary conditions of optimality for semilinear optimal control problems; Lyapunov equation and the stability of nonautonomous evolution equations in Hilbert spaces; least action for N-body problems with quasihomogeneous potentials.
| Erscheint lt. Verlag | 2.10.2001 |
|---|---|
| Verlagsort | Bosa Roca |
| Sprache | englisch |
| Maße | 178 x 254 mm |
| Gewicht | 635 g |
| Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
| Mathematik / Informatik ► Mathematik ► Analysis | |
| Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
| Technik ► Elektrotechnik / Energietechnik | |
| ISBN-10 | 0-8247-0681-1 / 0824706811 |
| ISBN-13 | 978-0-8247-0681-4 / 9780824706814 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich