Medical Computer Vision. Large Data in Medical Imaging
Springer International Publishing (Verlag)
978-3-319-05529-9 (ISBN)
Michael Kelm, Dipl.-Kfm. (FH), Geboren 1970, ausgebildeter Bankkaufmann, BWL-Fernstudium an der Hochschule Merseburg (FH), Abschluss 2007 als Diplom-Kaufmann (FH), seit 1999 tätig als Revisor in den Bereichen Aufsichtsrecht, Risikocontrollling, Rechnungslegung und Prüfung von Tochter- und Outsourcinggesellschaften einer Sparkasse.
Overview of the 2013 Workshop on Medical Computer Vision.- Semi-supervised Learning of Nonrigid Deformations for Image Registration.- Local Regression Learning via Forest Classification For 2D/3D Deformable Registration.- Flexible Architecture for Streaming and Visualization of Large Virtual Microscopy Images.- 2D-PCA Shape Models: Application to 3D Reconstruction of the Human Teeth from a Single Image.- Class-Specific Regression Random Forest for Accurate Extraction of Standard Planes from 3D Echocardiography.- Accurate Whole-Brain Segmentation for Alzheimer's Disease Combining an Adaptive Statistical Atlas and Multi-atlas.- Integrated Spatio-Temporal Segmentation of Longitudinal Brain Tumor Imaging Studies.- Robust Mixture-Parameter Estimation for Unsupervised Segmentation of Brain MR Images.- White Matter Supervoxel Segmentation by Axial DP-Means Clustering.- Semantic Context Forests for Learning-Based Knee Cartilage Segmentation in 3D MR Images.- Local Phase-Based Fast Ray Features for Automatic Left Ventricle Apical View Detection in 3D Echocardiography.- Automatic Aorta Detection in 3D Cardiac CT Images Using Bayesian Tracking Method.- Organ Localization Using Joint AP/LAT View Landmark Consensus Detection and Hierarchical Active Appearance Models.- Pectoral Muscle Detection in Digital Breast Tomosynthesis and Mammography.- Multilevel Image Feature Learning for Computer-Aided Diagnosis on Large-Scale Evaluation.- Shape Curvature Histogram: A Shape Feature for Celiac Disease Diagnosis.- 2D-Based 3D Volume Retrieval Using Singular Value Decomposition of Detected Regions.- Feature Extraction with Intrinsic Distortion Correction in Celiac Disease Imagery: No Need for Rasterization.- A Novel Shape Feature Descriptor for the Classification of Polyps in HD Colonoscopy.- Multi-Structure Atlas-Based Segmentation Using Anatomical Regions of Interest.- Using Probability Maps for Multi-organ Automatic Segmentation.
| Erscheint lt. Verlag | 10.4.2014 |
|---|---|
| Reihe/Serie | Image Processing, Computer Vision, Pattern Recognition, and Graphics | Lecture Notes in Computer Science |
| Zusatzinfo | XI, 229 p. 93 illus. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 379 g |
| Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
| Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
| Technik | |
| Schlagworte | 3D Reconstruction • Bildgebende Verfahren (Medizin) • Computer Tomography • computer vision • CT images • Image Registration • Image Segmentation • machine learning • Medical Image Analysis • Medizinische Informatik • pattern recognition • VISCERAL benchmark • Visualization |
| ISBN-10 | 3-319-05529-1 / 3319055291 |
| ISBN-13 | 978-3-319-05529-9 / 9783319055299 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich