Applied Linear Regression (eBook)
John Wiley & Sons (Verlag)
978-1-118-59485-8 (ISBN)
Praise for the Third Edition
'...this is an excellent book which could easily be used as a course text...'
-International Statistical Institute
The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples.
Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illustrates how to develop estimation, confidence, and testing procedures primarily through the use of least squares regression. While maintaining the accessible appeal of each previous edition,Applied Linear Regression, Fourth Edition features:
- Graphical methods stressed in the initial exploratory phase, analysis phase, and summarization phase of an analysis
- In-depth coverage of parameter estimates in both simple and complex models, transformations, and regression diagnostics
- Newly added material on topics including testing, ANOVA, and variance assumptions
- Updated methodology, such as bootstrapping, cross-validation binomial and Poisson regression, and modern model selection methods
Applied Linear Regression, Fourth Edition is an excellent textbook for upper-undergraduate and graduate-level students, as well as an appropriate reference guide for practitioners and applied statisticians in engineering, business administration, economics, and the social sciences.
SANFORD WEISBERG, PhD, is Professor of Statistics and Director of the Statistical Consulting Service in the School of Statistics at the University of Minnesota. He is also a coauthor of Applied Regression Including Computing and Graphics and An Introduction to Regression Graphics, both published by Wiley.
Praise for the Third Edition "e;...this is an excellent book which could easily be used as a course text..."e; International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illustrates how to develop estimation, confidence, and testing procedures primarily through the use of least squares regression. While maintaining the accessible appeal of each previous edition,Applied Linear Regression, Fourth Edition features: Graphical methods stressed in the initial exploratory phase, analysis phase, and summarization phase of an analysis In-depth coverage of parameter estimates in both simple and complex models, transformations, and regression diagnostics Newly added material on topics including testing, ANOVA, and variance assumptions Updated methodology, such as bootstrapping, cross-validation binomial and Poisson regression, and modern model selection methods Applied Linear Regression, Fourth Edition is an excellent textbook for upper-undergraduate and graduate-level students, as well as an appropriate reference guide for practitioners and applied statisticians in engineering, business administration, economics, and the social sciences.
SANFORD WEISBERG, PhD, is Professor of Statistics and Director of the Statistical Consulting Service in the School of Statistics at the University of Minnesota. He is also a coauthor of Applied Regression Including Computing and Graphics and An Introduction to Regression Graphics, both published by Wiley.
CHAPTER 1
Scatterplots and Regression
Regression is the study of dependence. It is used to answer interesting questions about how one or more predictors influence a response. Here are a few typical questions that may be answered using regression:
- Are daughters taller than their mothers?
- Does changing class size affect success of students?
- Can we predict the time of the next eruption of Old Faithful Geyser from the length of the most recent eruption?
- Do changes in diet result in changes in cholesterol level, and if so, do the results depend on other characteristics such as age, sex, and amount of exercise?
- Do countries with higher per person income have lower birth rates than countries with lower income?
- Are highway design characteristics associated with highway accident rates? Can accident rates be lowered by changing design characteristics?
- Is water usage increasing over time?
- Do conservation easements on agricultural property lower land value?
In most of this book, we study the important instance of regression methodology called linear regression. This method is the most commonly used in regression, and virtually all other regression methods build upon an understanding of how linear regression works.
As with most statistical analyses, the goal of regression is to summarize observed data as simply, usefully, and elegantly as possible. A theory may be available in some problems that specifies how the response varies as the values of the predictors change. If theory is lacking, we may need to use the data to help us decide on how to proceed. In either case, an essential first step in regression analysis is to draw appropriate graphs of the data.
We begin in this chapter with the fundamental graphical tools for studying dependence. In regression problems with one predictor and one response, the scatterplot of the response versus the predictor is the starting point for regression analysis. In problems with many predictors, several simple graphs will be required at the beginning of an analysis. A scatterplot matrix is a convenient way to organize looking at many scatterplots at once. We will look at several examples to introduce the main tools for looking at scatterplots and scatterplot matrices and extracting information from them. We will also introduce notation that will be used throughout the book.
1.1 Scatterplots
We begin with a regression problem with one predictor, which we will generically call X, and one response variable, which we will call Y.1 Data consist of values (xi, yi), i = 1, … , n, of (X, Y) observed on each of n units or cases. In any particular problem, both X and Y will have other names that will be displayed in this book using typewriter font, such as temperature or concentration, that are more descriptive of the data that are to be analyzed. The goal of regression is to understand how the values of Y change as X is varied over its range of possible values. A first look at how Y changes as X is varied is available from a scatterplot.
Inheritance of Height
One of the first uses of regression was to study inheritance of traits from generation to generation. During the period 1893–1898, Karl Pearson (1857–1936) organized the collection of n = 1375 heights of mothers in the United Kingdom under the age of 65 and one of their adult daughters over the age of 18. Pearson and Lee (1903) published the data, and we shall use these data to examine inheritance. The data are given in the data file Heights.2
Our interest is in inheritance from the mother to the daughter, so we view the mother's height, called mheight, as the predictor variable and the daughter's height, dheight, as the response variable. Do taller mothers tend to have taller daughters? Do shorter mothers tend to have shorter daughters?
A scatterplot of dheight versus mheight helps us answer these questions. The scatterplot is a graph of each of the n points with the response dheight on the vertical axis and predictor mheight on the horizontal axis. This plot is shown in Figure 1.1a. For regression problems with one predictor X and a response Y, we call the scatterplot of Y versus X a summary graph.
Figure 1.1 Scatterplot of mothers' and daughters' heights in the Pearson and Lee data. The original data have been jittered to avoid overplotting in (a). Plot (b) shows the original data, so each point in the plot refers to one or more mother–daughter pairs.
Here are some important characteristics of this scatterplot:
Figure 1.2 Scatterplot showing only pairs with mother's height that rounds to 58, 64, or 68 inches.
Forbes's Data
In an 1857 article, the Scottish physicist James D. Forbes (1809–1868) discussed a series of experiments that he had done concerning the relationship between atmospheric pressure and the boiling point of water. He knew that altitude could be determined from atmospheric pressure, measured with a barometer, with lower pressures corresponding to higher altitudes. Barometers in the middle of the nineteenth century were fragile instruments, and Forbes wondered if a simpler measurement of the boiling point of water could substitute for a direct reading of barometric pressure. Forbes collected data in the Alps and in Scotland. He measured at each location the atmospheric pressure pres in inches of mercury with a barometer and boiling point...
| Erscheint lt. Verlag | 25.11.2013 |
|---|---|
| Reihe/Serie | Wiley Series in Probability and Statistics |
| Wiley Series in Probability and Statistics | Wiley Series in Probability and Statistics |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
| Mathematik / Informatik ► Mathematik ► Statistik | |
| Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
| Technik | |
| Schlagworte | Angew. Wahrscheinlichkeitsrechn. u. Statistik / Modelle • ANOVA • Applied Linear Regression • Applied Probability & Statistics - Models • assessing fit • effects plots • expansion of the bootstrap • invariance of linear regression • lack-of-fit tests • least squares regression • misspecification of weights • Model Building • principal components • R2 • Regression Analysis • Regression (Math.) • Regressionsanalyse • Reliability • Sanford Weisberg • Splines • Statistics • Statistik |
| ISBN-10 | 1-118-59485-1 / 1118594851 |
| ISBN-13 | 978-1-118-59485-8 / 9781118594858 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich