Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Dirichlet and Related Distributions (eBook)

Theory, Methods and Applications
eBook Download: PDF
2011 | 1. Auflage
336 Seiten
John Wiley & Sons (Verlag)
978-1-119-99586-9 (ISBN)

Lese- und Medienproben

Dirichlet and Related Distributions - Kai Wang Ng, Guo-Liang Tian, Man-Lai Tang
Systemvoraussetzungen
80,99 inkl. MwSt
(CHF 79,10)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The Dirichlet distribution appears in many areas of application,
which include modelling of compositional data, Bayesian analysis,
statistical genetics, and nonparametric inference. This book
provides a comprehensive review of the Dirichlet distribution and
two extended versions, the Grouped Dirichlet Distribution (GDD) and
the Nested Dirichlet Distribution (NDD), arising from likelihood
and Bayesian analysis of incomplete categorical data and survey
data with non-response.

The theoretical properties and applications are also reviewed in
detail for other related distributions, such as the inverted
Dirichlet distribution, Dirichlet-multinomial distribution, the
truncated Dirichlet distribution, the generalized Dirichlet
distribution, Hyper-Dirichlet distribution, scaled Dirichlet
distribution, mixed Dirichlet distribution, Liouville distribution,
and the generalized Liouville distribution.

Key Features:

* Presents many of the results and applications that are
scattered throughout the literature in one single volume.

* Looks at the most recent results such as survival function and
characteristic function for the uniform distributions over the
hyper-plane and simplex; distribution for linear function of
Dirichlet components; estimation via the expectation-maximization
gradient algorithm and application; etc.

* Likelihood and Bayesian analyses of incomplete categorical
data by using GDD, NDD, and the generalized Dirichlet distribution
are illustrated in detail through the EM algorithm and data
augmentation structure.

* Presents a systematic exposition of the Dirichlet-multinomial
distribution for multinomial data with extra variation which cannot
be handled by the multinomial distribution.

* S-plus/R codes are featured along with practical examples
illustrating the methods.

Practitioners and researchers working in areas such as medical
science, biological science and social science will benefit from
this book.

Kai Wang Ng, Department of Statistics and Actuarial Science, The University of Hong Kong. Ng has published over seventy journal articles and book chapters and co-authored five books. Guo-Liang Tian, Department of Statistics and Actuarial Science, The University, of Hong Kong. His research areas include generalized mixed-effects models for longitudinal data, hierarchical modeling, and applied Bayesian methods in biostatistical models. Man-Lai Tang, Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong.

Preface.

Acknowledgments.

List of abbreviations.

List of symbols.

List of figures.

List of tables.

1 Introduction.

1.1 Motivating examples.

1.2 Stochastic representation and the¯d=operator.

1.3 Beta and inverted beta distributions.

1.4 Some useful identities and integral formulae.

1.5 The Newton-Raphson algorithm.

1.6 Likelihood in missing-data problems.

1.7 Bayesian MDPs and inversion of bayes' formula.

1.8 Basic statistical distributions.

2 Dirichlet distribution.

2.1 Definition and basic properties.

2.2 Marginal and conditional distributions.

2.3 Survival function and cumulative distribution function.

2.4 Characteristic functions.

2.5 Distribution for Linear Function of Dirichlet RandomVector.

2.6 Characterizations.

2.7 MLEs of the Dirichlet parameters.

2.8 Generalized method of moments estimation.

2.9 Estimation based on linear models.

2.10 Application in estimating ROC area.

3 Grouped Dirichlet distribution.

3.1 Three motivating examples.

3.2 Density function.

3.3 Basic properties.

3.4 Marginal distributions.

3.5 Conditional distributions.

3.6 Extension to multiple partitions.

3.7 Statistical inferences: likelihood function with GDDform.

3.8 Statistical inferences: likelihood function beyond GDDform.

3.9 Applications under nonignorable missing data mechanism.

4 Nested Dirichlet distribution.

4.1 Density function.

4.2 Two motivating examples.

4.3 Stochastic representation, mixed moments and mode.

4.4 Marginal distributions.

4.5 Conditional distributions.

4.6 Connection with exact null distribution for sphericitytest.

4.7 Large-sample likelihood inference.

4.8 Small-Sample Bayesian inference.

4.9 Applications.

4.10 A brief historical review.

5 Inverted Dirichlet distribution.

5.1 Definition through the density function.

5.2 Definition through stochastic representation.

5.3 Marginal and conditional distributions.

5.4 Cumulative distribution function and survival function.

5.5 Characteristic function.

5.6 Distribution for linear function of inverted Dirichletvector.

5.7 Connection with other multivariate distributions.

5.8 Applications.

6 Dirichlet-multinomial distribution.

6.1 Probability mass function.

6.2 Moments of the distribution.

6.3 Marginal and conditional distributions.

6.4 Conditional sampling method.

6.5 The method of moments estimation.

6.6 The method of maximum likelihood estimation.

6.7 Applications.

6.8 Testing the multinomial assumption against theDirichlet-multinomial alternative.

7 Truncated Dirichlet distribution.

7.1 Density function.

7.2 Motivating examples.

7.3 Conditional sampling method.

7.4 Gibbs sampling method.

7.5 The constrained maximum likelihood estimates.

7.6 Application to misclassification.

7.7 Application to uniform design of experiment withmixtures.

8 Other related distributions.

8.1 The generalized Dirichlet distribution.

8.2 The hyper-Dirichlet distribution.

8.3 The scaled Dirichlet distribution.

8.4 The mixed Dirichlet distribution.

8.5 The Liouville distribution.

8.6 The generalized Liouville distribution.

Appendix A: Some useful S-plus Codes.

References.

Author Index.

Subject Index.

"The book is a treasure chest both for researchers in
(mathematical and applied) statistics and for practitioners.
Researchers will especially pro_t from the impressive survey of the
literature and the many references, while practitioners will
acknowledge the many real data examples and the S-PLUS code
provided in the appendix." (Zentralblatt MATH, 1
December 2012)

Erscheint lt. Verlag 24.3.2011
Reihe/Serie Wiley Series in Probability and Statistics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Angewandte Wahrscheinlichkeitsrechnung u. Statistik • Angew. Wahrscheinlichkeitsrechn. u. Statistik / Modelle • Applied Probability & Statistics • Applied Probability & Statistics - Models • Probability & Mathematical Statistics • Statistics • Statistik • Wahrscheinlichkeitsrechnung u. mathematische Statistik
ISBN-10 1-119-99586-8 / 1119995868
ISBN-13 978-1-119-99586-9 / 9781119995869
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich