Differential and Integral Calculus, Volume 1 (eBook)
640 Seiten
John Wiley & Sons (Verlag)
978-1-118-03149-0 (ISBN)
Richard Courant's classic text Differential and Integral Calculus is an essential text for those preparing for a career in physics or applied math. Volume 1 introduces the foundational concepts of "function" and "limit", and offers detailed explanations that illustrate the "why" as well as the "how". Comprehensive coverage of the basics of integrals and differentials includes their applications as well as clearly-defined techniques and essential theorems. Multiple appendices provide supplementary explanation and author notes, as well as solutions and hints for all in-text problems.
Richard Courant (1888-1972) obtained his doctorate at the University of Göttingen in 1910. Here, he became Hilbert's assistant. He returned to Göttingen to continue his research after World War I, and founded and headed the university's Mathematical Institute. In 1933, Courant left Germany for England, from whence he went on to the United States after a year. In 1936, he became a professor at the New York University. Here, he headed the Department of Mathematics and was Director of the Institute of Mathematical Sciences - which was subsequently renamed the Courant Institute of Mathematical Sciences. Among other things, Courant is well remembered for his achievement regarding the finite element method, which he set on a solid mathematical basis and which is nowadays the most important way to solve partial differential equations numerically.
Partial table of contents:
The Continuum of Numbers, The Concept of Function, The Concept ofthe Limit of a Sequence, The Concept of Continuity.
The Fundamental Ideas of the Integral and Differential Calculus:The Definite Integral, The Derivative, The Estimation of Integralsand the Mean Value Theorem of the Integral Calculus.
Differentiation and Integration of the Elementary Functions: Maximaand Minima, The Logarithm and the Exponential Function, TheHyperbolic Functions.
Further Development of the Integral Calculus: The Method ofSubstitution, Integration by Parts, Integration of RationalFunctions, Improper Integrals.
Applications.
Taylor's Theorem and the Approximate Expression of Functions byPolynomials.
Numerical Methods.
Infinite Series and Other Limiting Processes.
Fourier Series.
A Sketch of the Theory of Functions of Several Variables.
The Differential Equations for the Simplest Types ofVibration.
Answers and Hints.
Index.
| Erscheint lt. Verlag | 15.8.2011 |
|---|---|
| Reihe/Serie | Wiley Classics Library | Wiley Classics Library |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Technik | |
| Schlagworte | Analysis • Calculus • Mathematics • Mathematik |
| ISBN-10 | 1-118-03149-0 / 1118031490 |
| ISBN-13 | 978-1-118-03149-0 / 9781118031490 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich