Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Introduction to Nonparametric Regression (eBook)

(Autor)

eBook Download: PDF
2005
John Wiley & Sons (Verlag)
9780471771449 (ISBN)

Lese- und Medienproben

Introduction to Nonparametric Regression - K. Takezawa
Systemvoraussetzungen
167,99 inkl. MwSt
(CHF 164,10)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
An easy-to-grasp introduction to nonparametric regression
This book's straightforward, step-by-step approach provides an excellent introduction to the field for novices of nonparametric regression. Introduction to Nonparametric Regression clearly explains the basic concepts underlying nonparametric regression and features:
* Thorough explanations of various techniques, which avoid complex mathematics and excessive abstract theory to help readers intuitively grasp the value of nonparametric regression methods
* Statistical techniques accompanied by clear numerical examples that further assist readers in developing and implementing their own solutions
* Mathematical equations that are accompanied by a clear explanation of how the equation was derived
The first chapter leads with a compelling argument for studying nonparametric regression and sets the stage for more advanced discussions. In addition to covering standard topics, such as kernel and spline methods, the book provides in-depth coverage of the smoothing of histograms, a topic generally not covered in comparable texts.
With a learning-by-doing approach, each topical chapter includes thorough S-Plus? examples that allow readers to duplicate the same results described in the chapter. A separate appendix is devoted to the conversion of S-Plus objects to R objects. In addition, each chapter ends with a set of problems that test readers' grasp of key concepts and techniques and also prepares them for more advanced topics.
This book is recommended as a textbook for undergraduate and graduate courses in nonparametric regression. Only a basic knowledge of linear algebra and statistics is required. In addition, this is an excellent resource for researchers and engineers in such fields as pattern recognition, speech understanding, and data mining. Practitioners who rely on nonparametric regression for analyzing data in the physical, biological, and social sciences, as well as in finance and economics, will find this an unparalleled resource.

KUNIO TAKEZAWA, PhD, is a Specific Research Scientist in the Department of Information Science and Technology at the National Agricultural Research Center, Japan. He is also an Associate Professor in the Cooperative Graduate School System at the Graduate School of Life and Environmental Sciences at the University of Tsukuba, Japan. Dr. Takezawa holds several patents in mathematics and is the recipient of a Research Award from the Japan Science and Technology Agency and a Thesis Award from the Japanese Agricultural Systems Society.
An easy-to-grasp introduction to nonparametric regression This book's straightforward, step-by-step approach provides an excellent introduction to the field for novices of nonparametric regression. Introduction to Nonparametric Regression clearly explains the basic concepts underlying nonparametric regression and features: * Thorough explanations of various techniques, which avoid complex mathematics and excessive abstract theory to help readers intuitively grasp the value of nonparametric regression methods * Statistical techniques accompanied by clear numerical examples that further assist readers in developing and implementing their own solutions * Mathematical equations that are accompanied by a clear explanation of how the equation was derived The first chapter leads with a compelling argument for studying nonparametric regression and sets the stage for more advanced discussions. In addition to covering standard topics, such as kernel and spline methods, the book provides in-depth coverage of the smoothing of histograms, a topic generally not covered in comparable texts. With a learning-by-doing approach, each topical chapter includes thorough S-Plus? examples that allow readers to duplicate the same results described in the chapter. A separate appendix is devoted to the conversion of S-Plus objects to R objects. In addition, each chapter ends with a set of problems that test readers' grasp of key concepts and techniques and also prepares them for more advanced topics. This book is recommended as a textbook for undergraduate and graduate courses in nonparametric regression. Only a basic knowledge of linear algebra and statistics is required. In addition, this is an excellent resource for researchers and engineers in such fields as pattern recognition, speech understanding, and data mining. Practitioners who rely on nonparametric regression for analyzing data in the physical, biological, and social sciences, as well as in finance and economics, will find this an unparalleled resource.

KUNIO TAKEZAWA, PhD, is a Specific Research Scientist in the Department of Information Science and Technology at the National Agricultural Research Center, Japan. He is also an Associate Professor in the Cooperative Graduate School System at the Graduate School of Life and Environmental Sciences at the University of Tsukuba, Japan. Dr. Takezawa holds several patents in mathematics and is the recipient of a Research Award from the Japan Science and Technology Agency and a Thesis Award from the Japanese Agricultural Systems Society.

Preface.

Acknowledgments.

1. Exordium.

2. Smoothing for Data with an Equispaced Predictor.

3. Nonparametric Regression for One-Dimensional Predictor.

4. Multidimensional Smoothing.

5. Nonparametric Regression with Predictors Represented as
Distributions.

6. Smoothing of Histograms and Nonparametric Probability Density
Functions.

7. Pattern Recognition.

Appendix A: Creation and Applications of B-Spline Bases.

Appendix B: R Objects.

Appendix C: Further Readings.

Index.

"...provides an accessible theoretical treatment of
nonparametric regression." (Journal of the American Statistical
Association, December 2006)

"...I like this book, and recommend it to graduate students
and researchers who plan to implement nonparametric models in their
research." (Technometrics, November 2006)

"A very useful book clearly presenting basic concepts of
nonparametric regression and applications to various real-life
situations...highly recommended." (CHOICE, June
2006)

"...a practical introduction to nonparametric
regression..." (Journal of Quality Technology, April
2006)

"...the presentation is very lucid and
easy-to-follow...this book will highly be appreciated by
students." (MAA Reviews, March 14, 2006)

"...deals concisely with the application of non-parametric
regression to multidimensional data..." (Journal of
Applied Statistics, 2007)

Erscheint lt. Verlag 13.12.2005
Reihe/Serie Wiley Series in Probability and Statistics
Wiley Series in Probability and Statistics
Wiley Series in Probability and Statistics
Zusatzinfo Tables: 0 B&W, 0 Color; Graphs: 200 B&W, 0 Color
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Approach • BASIC • Concepts • easytograsp • Excellent • explanations • Field • Introduction • nichtparametrische Verfahren • Nonparametric • Nonparametric Analysis • novices • Regression • Regression Analysis • Regressionsanalyse • Statistics • Statistik • stepbystep • techniques • thorough • various
ISBN-13 9780471771449 / 9780471771449
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich