Statistical Methods for Forecasting (eBook)
472 Seiten
John Wiley & Sons (Verlag)
978-0-470-31729-7 (ISBN)
that have been made more accessible to consumers in an effort to
increase global appeal and general circulation. With these new
unabridged softcover volumes, Wiley hopes to extend the lives of
these works by making them available to future generations of
statisticians, mathematicians, and scientists.
"This book, it must be said, lives up to the words on its
advertising cover: 'Bridging the gap between introductory,
descriptive approaches and highly advanced theoretical treatises,
it provides a practical, intermediate level discussion of a variety
of forecasting tools, and explains how they relate to one another,
both in theory and practice.' It does just that!"
-Journal of the Royal Statistical Society
"A well-written work that deals with statistical methods and models
that can be used to produce short-term forecasts, this book has
wide-ranging applications. It could be used in the context of a
study of regression, forecasting, and time series analysis by PhD
students; or to support a concentration in quantitative methods for
MBA students; or as a work in applied statistics for advanced
undergraduates."
-Choice
Statistical Methods for Forecasting is a comprehensive, readable
treatment of statistical methods and models used to produce
short-term forecasts. The interconnections between the forecasting
models and methods are thoroughly explained, and the gap between
theory and practice is successfully bridged. Special topics are
discussed, such as transfer function modeling; Kalman filtering;
state space models; Bayesian forecasting; and methods for forecast
evaluation, comparison, and control. The book provides time series,
autocorrelation, and partial autocorrelation plots, as well as
examples and exercises using real data. Statistical Methods for
Forecasting serves as an outstanding textbook for advanced
undergraduate and graduate courses in statistics, business,
engineering, and the social sciences, as well as a working
reference for professionals in business, industry, and government.
BOVAS ABRAHAM, PhD, is Associate Professor in the Department of Statistics and Actuarial Science at the University of Waterloo, Ontario, Canada. He is a Fellow of the American Statistical Association, and a member of the Statistical Society of Canada and the Royal Statistical Society. Dr. Abraham received his PhD in statistics from the University of Wisconsin-Madison. JOHANNES LEDOLTER, PhD, is Associate Professor in both the Department of Statistics and Actuarial Science and the Department of Management Sciences at the University of Iowa. He is a Fellow of the American Statistical Association and a member of the International Statistical Institute. Dr. Ledolter is coauthor of Statistical Quality Control: Strategies and Tools for Continual Improvement and Achieving Quality Through Continual Improvement, both published by Wiley. He received his PhD in statistics from the University of Wisconsin-Madison.
1. Introduction and Summary.
2. The Regression Model and Its Application in Forecasting.
3. Regression and Exponential Smoothing Methods to Forecast
Nonseasonal Time Series.
4. Regression and Exponential Smoothing Methods to Forecast
Seasonal Time Series.
5. Stochastic Time Series Models.
6. Seasonal Autoregressive Integrated Moving Average Models.
7. Relationships Between Forecasts from General Exponential
Smoothing and Forecasts from Arima Time Series Models.
8. Special Topics.
References.
Exercises.
Data Appendix.
Table Appendix.
Author Index.
Subject Index.
| Erscheint lt. Verlag | 4.11.2009 |
|---|---|
| Reihe/Serie | Wiley Series in Probability and Statistics | Wiley Series in Probability and Statistics |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
| Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
| Technik | |
| Schlagworte | Computational & Graphical Statistics • Finanz- u. Wirtschaftsstatistik • Prognose • Rechnergestützte u. graphische Statistik • Rechnergestützte u. graphische Statistik • Statistics • Statistics for Finance, Business & Economics • Statistik |
| ISBN-10 | 0-470-31729-9 / 0470317299 |
| ISBN-13 | 978-0-470-31729-7 / 9780470317297 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich