Introduction to Spectral Theory
Springer-Verlag New York Inc.
978-1-4612-6888-8 (ISBN)
(c) 1996 Springer Science+Business Media New York Originally published by Springer-Verlag New Vork in 1996 Softcover reprint ofthe hardcover 15t edition 1996 AII rights reserved. This work may not be translated or copied in whole or in part without the written permission ofthe publisher Springer Science+Business Media, LLC, except for brief excerpts in connection with reviews or scholarly analysis.
1 The Spectrum of Linear Operators and Hilbert Spaces.- 2 The Geometry of a Hilbert Space and Its Subspaces.- 3 Exponential Decay of Eigenfunctions.- 4 Operators on Hilbert Spaces.- 5 Self-Adjoint Operators.- 6 Riesz Projections and Isolated Points of the Spectrum.- 7 The Essential Spectrum: Weyl’s Criterion.- 8 Self-Adjointness: Part 1. The Kato Inequality.- 9 Compact Operators.- 10 Locally Compact Operators and Their Application to Schrödinger Operators.- 11 Semiclassical Analysis of Schrödinger Operators I: The Harmonic Approximation.- 12 Semiclassical Analysis of Schrödinger Operators II: The Splitting of Eigenvalues.- 13 Self-Adjointness: Part 2. The Kato-Rellich Theorem 131.- 14 Relatively Compact Operators and the Weyl Theorem.- 15 Perturbation Theory: Relatively Bounded Perturbations.- 16 Theory of Quantum Resonances I: The Aguilar-Balslev-Combes-Simon Theorem.- 17 Spectral Deformation Theory.- 18 Spectral Deformation of Schrödinger Operators.- 19 The General Theory of Spectral Stability.- 20 Theory of Quantum Resonances II: The Shape Resonance Model.- 21 Quantum Nontrapping Estimates.- 22 Theory of Quantum Resonances III: Resonance Width.- 23 Other Topics in the Theory of Quantum Resonances.- Appendix 1. Introduction to Banach Spaces.- A1.1 Linear Vector Spaces and Norms.- A1.2 Elementary Topology in Normed Vector Spaces.- A1.3 Banach Spaces.- A1.4 Compactness.- 1. Density results.- 2. The Hölder Inequality.- 3. The Minkowski Inequality.- 4. Lebesgue Dominated Convergence.- Appendix 3. Linear Operators on Banach Spaces.- A3.1 Linear Operators.- A3.2 Continuity and Boundedness of Linear Operators.- A3.3 The Graph of an Operator and Closure.- A3.4 Inverses of Linear Operators.- A3.5 Different Topologies on L(X).- Appendix 4. The Fourier Transform, SobolevSpaces, and Convolutions.- A4.1 Fourier Transform.- A4.2 Sobolev Spaces.- A4.3 Convolutions.- References.
| Reihe/Serie | Applied Mathematical Sciences ; 113 |
|---|---|
| Zusatzinfo | IX, 338 p. |
| Verlagsort | New York, NY |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
| Technik | |
| ISBN-10 | 1-4612-6888-5 / 1461268885 |
| ISBN-13 | 978-1-4612-6888-8 / 9781461268888 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich