Wavelet Theory (eBook)
504 Seiten
John Wiley & Sons (Verlag)
978-1-118-16566-9 (ISBN)
applications
Exploring the growing relevance of wavelets in the field of
mathematics, Wavelet Theory: An Elementary Approach with
Applications provides an introduction to the topic, detailing the
fundamental concepts and presenting its major impacts in the world
beyond academia. Drawing on concepts from calculus and linear
algebra, this book helps readers sharpen their mathematical proof
writing and reading skills through interesting, real-world
applications.
The book begins with a brief introduction to the fundamentals of
complex numbers and the space of square-integrable functions. Next,
Fourier series and the Fourier transform are presented as tools for
understanding wavelet analysis and the study of wavelets in the
transform domain. Subsequent chapters provide a comprehensive
treatment of various types of wavelets and their related concepts,
such as Haar spaces, multiresolution analysis, Daubechies wavelets,
and biorthogonal wavelets. In addition, the authors include two
chapters that carefully detail the transition from wavelet theory
to the discrete wavelet transformations. To illustrate the
relevance of wavelet theory in the digital age, the book includes
two in-depth sections on current applications: the FBI Wavelet
Scalar Quantization Standard and image segmentation.
In order to facilitate mastery of the content, the book features
more than 400 exercises that range from theoretical to
computational in nature and are structured in a multi-part format
in order to assist readers with the correct proof or solution.
These problems provide an opportunity for readers to further
investigate various applications of wavelets. All problems are
compatible with software packages and computer labs that are
available on the book's related Web site, allowing readers to
perform various imaging/audio tasks, explore computer wavelet
transformations and their inverses, and visualize the applications
discussed throughout the book.
Requiring only a prerequisite knowledge of linear algebra and
calculus, Wavelet Theory is an excellent book for courses in
mathematics, engineering, and physics at the upper-undergraduate
level. It is also a valuable resource for mathematicians,
engineers, and scientists who wish to learn about wavelet theory on
an elementary level.
David K. Ruch, PhD, is Professor in the Department of Mathematical and Computer Sciences at the Metropolitan State College of Denver. He has authored more than twenty journal articles in his areas of research interest, which include wavelets and functional analysis. Patrick J. Van Fleet, PhD, is Professor of Mathematics and Director of the Center for Applied Mathematics at the University of St. Thomas in St. Paul, Minnesota. He has written numerous journal articles in the areas of wavelets and spline theory. Dr. Van Fleet is the author of Discrete Wavelet Transformations: An Elementary Approach with Applications, also published by Wiley.
²Preface xi
Acknowledgments xix
1 The Complex Plane and the Space L²(R) 1
1.1 Complex Numbers and Basic Operations 1
Problems 5
1.2 The Space L²(R) 7
Problems 16
1.3 Inner Products 18
Problems 25
1.4 Bases and Projections 26
Problems 28
2 Fourier Series and Fourier Transformations 31
2.1 Euler's Formula and the Complex Exponential Function 32
Problems 36
2.2 Fourier Series 37
Problems 49
2.3 The Fourier Transform 53
Problems 66
2.4 Convolution and 5-Splines 72
Problems 82
3 Haar Spaces 85
3.1 The Haar Space Vo 86
Problems 93
3.2 The General Haar Space Vj 93
Problems 107
3.3 The Haar Wavelet Space W0 108
Problems 119
3.4 The General Haar Wavelet Space Wj 120
Problems 133
3.5 Decomposition and Reconstruction 134
Problems 140
3.6 Summary 141
4 The Discrete Haar Wavelet Transform and Applications 145
4.1 The One-Dimensional Transform 146
Problems 159
4.2 The Two-Dimensional Transform 163
Problems 171
4.3 Edge Detection and Naive Image Compression 172
5 Multiresolution Analysis 179
5.1 Multiresolution Analysis 180
Problems 196
5.2 The View from the Transform Domain 200
Problems 212
5.3 Examples of Multiresolution Analyses 216
Problems 224
5.4 Summary 225
6 Daubechies Scaling Functions and Wavelets 233
6.1 Constructing the Daubechies Scaling Functions 234
Problems 246
6.2 The Cascade Algorithm 251
Problems 265
6.3 Orthogonal Translates, Coding, and Projections 268
Problems 276
7 The Discrete Daubechies Transformation and Applications 277
7.1 The Discrete Daubechies Wavelet Transform 278
Problems 290
7.2 Projections and Signal and Image Compression 293
Problems 310
7.3 Naive Image Segmentation 314
Problems 322
8 Biorthogonal Scaling Functions and Wavelets 325
8.1 A Biorthogonal Example and Duality 326
Problems 333
8.2 Biorthogonality Conditions for Symbols and Wavelet Spaces 334
Problems 350
8.3 Biorthogonal Spline Filter Pairs and the CDF97 Filter Pair 353
Problems 368
8.4 Decomposition and Reconstruction 370
Problems 375
8.5 The Discrete Biorthogonal Wavelet Transform 375
Problems 388
8.6 Riesz Basis Theory 390
Problems 397
9 Wavelet Packets 399
9.1 Constructing Wavelet Packet Functions 400
Problems 413
9.2 Wavelet Packet Spaces 414
Problems 424
9.3 The Discrete Packet Transform and Best Basis Algorithm 424
Problems 439
9.4 The FBI Fingerprint Compression Standard 440
Appendix A: Huffman Coding 455
Problems 462
References 465
Topic Index 469
Author Index 479
"The book, putting emphasize on an analytic facet of wavelets, can
be seen as complementary
to the previous Patrick J. Van Fleet's book, DiscreteWavelet
Transformations: An Elementary
Approach with Applications, focused on their algebraic properties."
(Zentralblatt MATH, 2011)
"Requiring only a prerequisite knowledge of calculus and linear
algebra, Wavelet theory is an excellent book for courses in
mathematics, engineering, and physics at the upper-undergraduate
level. It is also a valuable resource for mathematicians,
engineers, and scientists who wish to learn about wavelet theory on
an elementary level." (Mathematical Reviews, 2011)
| Erscheint lt. Verlag | 15.9.2011 |
|---|---|
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Technik | |
| Schlagworte | Angewandte Mathematik • Diskrete Mathematik • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Mathematics • Mathematik • Signal Processing • Signalverarbeitung • Wavelets |
| ISBN-10 | 1-118-16566-7 / 1118165667 |
| ISBN-13 | 978-1-118-16566-9 / 9781118165669 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich