Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Neutron Stars and Pulsars (eBook)

(Autor)

Werner Becker (Herausgeber)

eBook Download: PDF
2009 | 1. Auflage
XV, 697 Seiten
Springer-Verlag
978-3-540-76965-1 (ISBN)

Lese- und Medienproben

Neutron Stars and Pulsars -  Werner Becker
Systemvoraussetzungen
309,23 inkl. MwSt
(CHF 299,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory.

Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists.

The aim of this book is to serve as a reference work which not only reviews the progress made since the early days of pulsar astronomy, but especially focuses on questions such as: 'What have we learned about the subject and how did we learn it?', 'What are the most important open questions in this area?' and 'What new tools, telescopes, observations, and calculations are needed to answer these questions?'.

All authors who have contributed to this book have devoted a significant part of their scientific careers to exploring the nature of neutron stars and understanding pulsars. Everyone has paid special attention to writing educational comprehensive review articles with the needs of beginners, students and young scientists as potential readers in mind. This book will be a valuable source of information for these groups.

Preface 6
Contents 8
Contributors 14
Radio Pulsar Statistics 17
1.1 Introduction 17
1.2 The Observed Pulsar Spatial Distribution 20
1.3 Selection Effects in Radio Pulsar Surveys 21
1.4 Techniques to Account for Observational Selection 23
1.4.1 Population Inversion Techniques 23
1.4.2 Monte Carlo Population Synthesis 24
1.5 Outstanding Problems 25
1.5.1 Population Size and Birth Rate 26
1.5.2 The Birth Spin Periods of Pulsars 27
1.5.3 Period Evolution and Field Decay of Isolated Pulsars 27
1.5.4 Statistical Puzzles in the Millisecond Pulsar Population 28
1.5.5 Where Are All the Isolated “Recycled” Pulsars? 29
1.5.6 How Much Do We Understand About Globular Cluster Pulsars? 30
1.6 Concluding Remarks 30
An Open Approach to Pulsar Population Syntheses 31
References 32
Radio Emission Properties of Pulsars 34
2.1 Introduction 34
2.2 Parkes Multi-Beam Pulsar Surveys 37
2.3 Other Recent Surveys 40
2.4 Pulsar Nulling and Mode Changing 42
2.5 Pulse Modulation and Drifting 46
2.6 Giant and Not-So-Giant Pulses 48
2.7 Transient Radio Emission from a Magnetar 50
2.8 Rotation Axis: Proper Motion Correlation 51
2.9 Conclusions 53
References 53
Rotating Radio Transients 55
3.1 Introduction 55
3.2 The Discovery of Rotating Radio Transients 57
3.3 Ongoing Radio Observations of the RRATs 62
3.3.1 J0848- 43 63
3.3.2 J1317- 5759 64
3.3.3 J1443- 60 64
3.3.4 J1754- 30 65
3.3.5 J1819- 1458 65
3.3.6 J1826- 14 65
3.3.7 J1839- 01 65
3.3.8 J1846- 02 66
3.3.9 J1848- 12 66
3.3.10 J1911+00 67
3.3.11 J1913+1333 67
3.4 X-Ray Properties of the RRATs 68
3.4.1 J1317- 5759 69
3.4.2 J1819- 1458 69
3.4.3 J1913+1333 72
3.5 What Are They? 73
3.6 Population Estimates 75
3.7 Recent Discoveries 77
3.8 Concluding Remarks 78
References 79
Intermittent Pulsars 81
4.1 Introduction 81
4.2 PSR B1931+24 81
4.3 Discussion 84
References 86
The Double Pulsar: A Unique Lab for Relativistic Plasma Physics and Tests of General Relativity 87
5.1 Introduction 87
5.2 The Double Pulsar 88
5.2.1 A Laboratory for Plasma Physics 88
5.2.2 A Laboratory for Strong-Field Gravity 91
5.2.3 Space-Motion and Evolution of the Double Pulsar 101
5.3 Orbital Decay Measurements and Alternative Theories of Gravity 102
5.4 Future Tests 102
5.5 Concluding Remarks 103
References 104
X-Ray Emission from Pulsars and Neutron Stars 105
6.1 Introduction 105
6.2 Physics and Astrophysics of Isolated Neutron Stars 109
6.2.1 Rotation-Powered Pulsars: The Magnetic Braking Model 110
6.2.2 High-Energy Emission Models 112
6.3 High-Energy Emission Properties of Neutron Stars 117
6.3.1 Young Neutron Stars in Supernova Remnants 117
6.3.2 Cooling Neutron Stars 129
6.3.3 Old Nearby Radio Pulsars 129
6.3.4 Millisecond Pulsars 133
6.4 Summary 139
6.4.1 Concluding Remarks 151
References 151
Isolated Neutron Stars: The Challenge of Simplicity 155
7.1 Introduction 155
7.2 The Magnificent Seven in Parade 158
7.2.1 Timing Properties 158
7.2.2 Spectral Properties 159
7.2.3 Optical Counterparts, Proper Motions and Distances 162
7.3 Modeling the Surface Emission 163
7.3.1 Pulse Profiles 164
7.3.2 Spectra 168
7.4 Open Issues and Future Perspectives 172
References 175
Millisecond Pulsars in Globular Clusters and the Field 178
8.1 Introduction 178
8.2 Early X-Ray Studies of MSPs 179
8.2.1 ROSAT, RXTE, and ASCA Observations 179
8.3 Chandra Studies of MSPs in Globular Clusters 180
8.3.1 47 Tuc 180
8.3.2 NGC 6397 182
8.3.3 M28 and Terzan 5 185
8.3.4 Other Clusters 186
8.4 MSPs as Beacons for Constraining the Neutron Star Equation of State 187
8.4.1 PSR J0437- 4715 188
8.4.2 PSRs J0030+0451 and J2124- 3358 189
8.5 Future Prospects 190
8.5.1 Searches for Radio-Quiet MSPs 190
References 192
Theory of Radiative Transfer in Neutron Star Atmospheres and Its Applications 194
9.1 Introduction 194
9.2 Properties of X-ray Emission from Isolated Neutron Stars 195
9.3 Modeling Thermal Radiation from Neutron Stars 196
9.3.1 Why Is the Thermal Radiation Important? 196
9.3.2 Properties of Neutron Star Surfaces 197
9.3.3 Non-Magnetic Atmosphere Models 199
9.3.4 Magnetized Atmosphere Models 202
9.3.5 Thermal Radiation as Detected by a Distant Observer 204
9.3.6 Atmosphere Emission vs. Blackbody Radiation 205
9.3.7 Modeling Radiation from Condensed Neutron Star Surface 206
9.4 Thermal Emission from Neutron Stars: Observational Results 207
9.4.1 PSR J1119- 6127 207
9.4.2 The Vela Pulsar and PSR B1706- 44 209
9.4.3 PSRs J0538+2817 and B2334+61 210
9.4.4 Middle-Aged Pulsars: B0656+14, B1055- 52 and Geminga 211
9.4.5 Old Radio Pulsars 214
9.4.6 Millisecond Pulsars 216
9.4.7 Putative Pulsars: CXOU J061705.3+222127 (J0617) and RX J0007.0+ 7302 ( J0007) 218
9.4.8 1E 1207.4- 5209 ( 1E1207) 218
9.5 Concluding Remarks 220
References 222
Neutron Star Interiors and the Equation of State of Superdense Matter 225
10.1 Introduction 225
10.2 Neutron Star Masses 227
10.3 Composition of Cold and Dense Neutron Star Matter 229
10.3.1 Hyperons and Baryon Resonances 230
10.3.2 Meson Condensation 232
10.3.3 H-Matter and Exotic Baryons 233
10.3.4 Quark Deconfinement 234
10.3.5 Color-Superconductivity 236
10.4 Strange Quark Matter 238
10.4.1 Nuclear Crust on Strange Stars 238
10.4.2 Strange Dwarfs 239
10.4.3 Surface Properties of Strange Matter 239
10.5 Proto Neutron Star Matter 240
10.6 Rotational Instabilities 242
10.7 Net Electric Fields and Compact Star Structure 244
10.8 Conclusions and Outlook 249
References 253
Neutron Star Cooling: I 258
11.1 Introduction 258
11.2 The Essential Physics of Neutron Star Cooling 260
11.2.1 Specific Heat 261
11.2.2 Pairing: Superfluidity and Superconductivity 263
11.2.3 Neutrino Emission 267
11.2.4 Photon Emission and the Envelope 271
11.2.5 Some Simple Analytical Solutions 276
11.3 Minimal Cooling of Neutron Stars 279
11.4 Fast Cooling of Neutron Stars 286
11.4.1 A Warning About Fast Neutrino Cooling Scenarios 288
11.4.2 A Look at the Evolution of Temperature Profiles 290
11.5 More than Only Dense Matter: Magnetic Fields 291
11.6 Conclusions and Future Prospects 295
References 297
Neutron Star Cooling: II 300
12.1 Introduction 300
12.1.1 Historical Background 300
12.1.2 Recent Developments 302
12.2 Basic Equations and Input Physics 303
12.2.1 Basic Equations and Methods of Solution 303
12.2.2 Major Input Parameters and Their Effects 307
12.3 Neutron Star Thermal Evolution Models 315
12.3.1 Earlier Work 315
12.3.2 Currently Up-Dated Observational Data 319
12.3.3 Recent and Current Thermal Evolution Models 321
12.4 Future Prospects 326
12.5 Concluding Remarks 327
References 327
Turning Points in the Evolution of Isolated Neutron Stars’ Magnetic Fields 330
13.1 Introduction 330
13.2 MHD Instabilities Immediately After Birth: Magnetar or Radio Pulsar? 334
13.3 Fallback Accretion, Submergence and Rediffusion: Pulsar or Radio Quiet Neutron Star? 343
13.4 Thermoelectric Instabilities: Strong Fields Despite Deep Submergence? 347
13.5 Large Magnetization Parameters: Hall-Drift Induced Instabilities and Strongly Anisotropic Surface Temperatures? 352
13.5.1 Hall-Drift in the Crust 352
13.5.2 Temperature Distribution in the Magnetized Crust 354
13.6 Concluding Remarks 360
References 361
Pulsar Spin, Magnetic Fields, and Glitches 364
14.1 Introduction 364
14.2 Magnetic Field Changes in Spinning Down Neutron Stars 369
14.3 Magnetic Dipole Field Changes in Spinning Up NSs 370
14.4 Comparisons of Pulsar Dipole Field Observations with Model Expectations 373
14.5 Polar Cap Areas 374
14.6 Pulsar Spin-Period Glitches from Spin-Induced B-Field Changes 376
14.6.1 Crab-Like Glitches 376
14.6.2 Giant Vela-Like Glitches 378
14.7 Open Questions and Summary 379
References 381
Pulsar Emission: Where to Go 383
15.1 Introduction 383
15.2 Pulsar Electrodynamics: Follow the Energy 384
15.2.1 Force-Free Model: Heuristics 386
15.2.2 Force-Free Model: Results 387
15.2.3 Beyond the Force-Free Model: Plasma Sighs and Whispers 390
15.2.4 Electrospheres? 393
15.2.5 Magnetic Geometry of Radiating Layers 396
15.2.6 Current Flow Profile and Gap Electrodynamics 397
15.2.7 Gap Subversion: Non-Uniform Current Profiles 399
15.2.8 Gamma Ray Tests of Existing Gap Models 405
15.3 Follow the Mass 408
15.3.1 Observations and Consequences 409
15.3.2 Pulsar Wind Nebula Models 412
15.3.3 Beyond MHD 416
15.4 Conclusion: Pulsar Problems and Prospects 426
References 427
The Theory of PulsarWinds and Nebulae 431
16.1 Introduction 431
16.2 The Magnetosphere 432
16.3 The Wind of an Aligned Rotator 434
16.4 The StripedWind 437
16.5 Observability of the Wind 440
16.5.1 Point-Like Appearance 440
16.5.2 Inverse Compton Scattering 442
16.5.3 Pulses from the Wind 443
16.6 The Termination Shock 446
16.7 The Nebula 450
16.8 Summary 456
References 457
Implications of HESS Observations of Pulsar Wind Nebulae 461
17.1 Introduction 461
17.2 The Evolving Definition of Pulsar Wind Nebulae 462
17.3 Energy Scales and Lifetimes of X-Ray Synchrotron and VHE IC Emitting Electrons 464
17.4 Particle Acceleration at PWN Shocks 466
17.4.1 The Synchrotron Limit 467
17.4.2 The Gyro-Radius Limit 467
17.4.3 PSR B1929+10: A Challenge for Particle Acceleration in PWN Shocks 469
17.5 The Energy Dependent Cooling Radius of a PWN 470
17.6 Pleres Pera or “Filled Bags” 472
17.7 HESS J1825- 137 and the “ Three Princes of Serendip” 473
17.7.1 The Anomalously Large Size of HESS J1825- 137 and Its Implied SNR Shell 474
17.7.2 The Offset PWN in X-Rays and VHE . -Rays 475
17.7.3 Energy Dependent Morphology and the Cooling Break 476
17.7.4 Conclusion: A Particle Dominated Wind in HESS J1825- 137 480
17.8 Vela X: The Prototype for Evolutionary Studies 481
17.8.1 HESS Detection of the Vela X “Cocoon”: Radio and X-Ray Correlation 481
17.8.2 Constraints on the Cocoon Field Strength from the Upper Synchrotron Cutoff Energy 484
17.8.3 Diffusion of VHE Particles from the Cocoon 484
17.8.4 No “Missing” Leptonic Component in Vela X 485
17.8.5 The HESS Signal: Hadrons or Leptons? 485
17.8.6 The VHE y -Ray Spectral Break in the Vela X Cocoon 486
17.9 Summary 487
References 488
High Energy Emission from Pulsars and Pulsar Wind Nebulae 490
18.1 Introduction 490
18.2 Standard Pulsar Magnetospheric Models 491
18.3 Summary of Some Interesting Observed Results in X-Rays and Gamma- Rays 494
18.4 Polar Cap and Slot Gap Models 496
18.5 Outer Gap Models 499
18.5.1 CHR Model 499
18.5.2 A Self-Consistent Outer Gap Model 502
18.5.3 Single Gap Models 504
18.5.4 CRZ Model 506
18.6 Model Fitting of the Radiation from the Crab Pulsar 511
18.6.1 Phase-Resolved Spectrum of the Crab Pulsar 511
18.6.2 Polarization of the Crab Pulsar 515
18.7 A Simple Pulsar Wind Model 517
18.8 Applications to X-Ray Emission 520
18.8.1 Lx–Lsd Relations from ASCA Data 520
18.8.2 Why Do MSPs in the Field and Those in 47 Tuc Obey Different Lx– Lsd Relation? 523
18.8.3 X-Ray Tails Associated with Pulsars 526
18.9 Conclusion 526
References 527
High-energy Emission from the Polar Cap and Slot Gap 530
19.1 Introduction 530
19.2 Acceleration Near the Polar Cap and Beyond 531
19.2.1 Polar Cap Accelerators 532
19.2.2 Death Lines 534
19.3 Electric Field Screening and Polar Cap Heating 535
19.4 Slot Gap Accelerator 538
19.5 High-energy Radiation 539
19.5.1 Polar Cap and Slot Gap Cascades 539
19.5.2 Radiation from the High-altitude Slot Gap 541
19.5.3 Relativity, Geometry and Caustics 543
19.5.4 Radiation from Millisecond Pulsars 544
19.6 Pulsar Emission at Multi-wavelengths 544
19.6.1 Radio Emission Geometry 546
19.6.2 The Global Picture 547
19.7 Open Questions 548
References 549
Physics of Drifting Sub-pulses in Radio Pulsars 552
20.1 Introduction 552
20.2 Basic Pulsar Electrodynamics 554
20.2.1 Electric Circuit 556
20.2.2 Rotational Drift of Wind in Oblique Pulsar 559
20.2.3 Rotational Drift of Wind in Aligned Pulsar 560
20.3 Models of Drifting Sub-pulses 562
20.3.1 Ruderman and Sutherland Models 563
20.3.2 The Phenomenological Wright-model 564
20.3.3 The Clemens and Rosen Model 565
20.3.4 Drift Wave Models 566
20.3.5 Intermediate Conclusion and Forward Look 567
20.4 Diocotron Instability Model 568
20.4.1 Equilibrium 569
20.4.2 Instability 573
20.4.3 Numerical Results 574
20.4.4 Applications 576
20.5 Future Prospects 580
References 582
Soft Gamma-Ray Repeaters and Magnetars 584
21.1 Introduction 584
21.2 The Basic Facts 585
21.3 The Less Certain Facts 588
21.4 Interpretation 593
21.5 Magnetar Manifestations 595
21.6 Open Questions 595
21.7 Acknowledgments 596
References 596
X-Ray Polarimetry and Its Potential Use for Understanding Neutron Stars 598
22.1 Introduction 598
22.2 Background 599
22.3 Scientific Basis for Neutron Star X-Ray Polarimetry 600
22.3.1 Radio Pulsars 600
22.3.2 Magnetars 602
22.3.3 XDINSs and CCOs 603
22.3.4 Pulsating X-Ray Binaries 604
22.3.5 Other Applications 606
22.4 Instrumental Approaches 606
22.4.1 Polarimeter Basics 607
22.4.2 Statistics 608
22.4.3 Crystal Polarimeters 609
22.4.4 Scattering Polarimeters 612
22.4.5 Photo-Electron Tracking Polarimeters 613
22.4.6 X-Ray Polarimeters at the Focus of a Telescope 617
22.4.7 X-Ray Polarimeters without a Telescope 621
22.5 Discussion and Conclusions 624
References 626
GeV Gamma-Ray Pulsar Detection 629
23.1 Introduction 629
23.2 GeV–TeV Gamma Ray Detection 631
23.3 Atmospheric Cherenkov Detectors 634
23.3.1 VERITAS 637
23.3.2 MAGIC 638
23.3.3 H.E.S.S 640
23.3.4 The Farther Future: 5@5, CTA, and LTT 641
23.4 Space-Based Observatories 643
23.4.1 AGILE 644
23.4.2 AMS 644
23.5 GLAST: The Gamma-Ray Large Area Space Telescope 646
23.5.1 LAT: The Large Area Telescope 646
23.5.2 Detailing the Instrument Response 647
23.5.3 Radio Timing of Gamma-Ray Pulsar Candidates 653
23.5.4 Pulsar Science with the GLAST LAT 654
23.6 Concluding Remarks 654
References 655
Gravitational Waves from Spinning Neutron Stars 658
24.1 Introduction 658
24.2 Continuous Gravitational Waves from Neutron Stars 661
24.2.1 Emission Mechanisms for Continuous Gravitational Waves 662
24.2.2 Loudest Expected Signal from Unknown Isolated Neutron Stars 665
24.2.3 The Spin-Down Limit for Known Pulsars 665
24.2.4 Maximum Expected Signal from Accreting Neutron Stars 666
24.3 Detectors of Gravitational Waves 667
24.3.1 LIGO/GEO600 Sensitivities and Scientific Runs 668
24.4 Data Analysis of Continuous Gravitational Waves 670
24.4.1 The General Form of the Signal 671
24.4.2 Signals in Noise 673
24.4.3 Frequentist Framework: Hypothesis Testing 674
24.4.4 Bayesian Analysis: Parameter Estimation 677
24.4.5 Parameter Space of Coherent Wide-Parameter Searches 679
24.4.6 Semi-Coherent Methods 680
24.4.7 Hierarchical Searches and Einstein@Home 683
24.5 Current Status of the Search for Continuous GWs 684
24.5.1 Overview of Continuous-Wave Searches 684
24.5.2 Results from Completed Searches 685
24.5.3 Ongoing and Future Searches 687
24.5.4 Previous Upper Limits from Other Detectors 688
24.6 Future Prospects 689
References 690
Acknowledgments 693
Index 696

Erscheint lt. Verlag 11.2.2009
Reihe/Serie Astrophysics and Space Science Library
Zusatzinfo XV, 697 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Literatur
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Technik Elektrotechnik / Energietechnik
Schlagworte Astronomy • Condensed Matter • General relativity • Gravitational Waves from Spinning Neutron Stars • Gravity • Isolated Neutron Stars and Millisecond Pulsars • Magnetosphere • Neutron • Neutron Star Cooling and Magnetic Field Evolution • Particle Acceleration and Interactions in Pulsar Magnetosph • Particle Acceleration and Interactions in Pulsar Magnetospheres • pulsar wind nebulae • Radio and high Energy Emission from Rotation-Powered Pulsars • Relativity • Soft Gamma-ray Repeaters and Magnetars • Star • Stars • Structure of Neutron Stars and EOS
ISBN-10 3-540-76965-X / 354076965X
ISBN-13 978-3-540-76965-1 / 9783540769651
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 25,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Der Wettstreit Dunkler Materie und Dunkler Energie: Ist das Universum …

von Adalbert W. A. Pauldrach; Tadziu Hoffmann

eBook Download (2022)
Springer-Verlag
CHF 38,95