Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Regularization of Ill-Posed Problems by Iteration Methods - S.F. Gilyazov, N.L. Gol'dman

Regularization of Ill-Posed Problems by Iteration Methods

Buch | Softcover
342 Seiten
2010 | Softcover reprint of hardcover 1st ed. 2000
Springer (Verlag)
978-90-481-5382-4 (ISBN)
CHF 149,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Iteration regularization, i.e., utilization of iteration methods of any form for the stable approximate solution of ill-posed problems, is one of the most important but still insufficiently developed topics of the new theory of ill-posed problems. In this monograph, a general approach to the justification of iteration regulari­ zation algorithms is developed, which allows us to consider linear and nonlinear methods from unified positions. Regularization algorithms are the 'classical' iterative methods (steepest descent methods, conjugate direction methods, gradient projection methods, etc.) complemented by the stopping rule depending on level of errors in input data. They are investigated for solving linear and nonlinear operator equations in Hilbert spaces. Great attention is given to the choice of iteration index as the regularization parameter and to estimates of errors of approximate solutions. Stabilizing properties such as smoothness and shape constraints imposed on the solution are used. On the basis of these investigations, we propose and establish efficient regularization algorithms for stable numerical solution of a wide class of ill-posed problems. In particular, descriptive regularization algorithms, utilizing a priori information about the qualitative behavior of the sought solution and ensuring a substantial saving in computational costs, are considered for model and applied problems in nonlinear thermophysics. The results of calculations for important applications in various technical fields (a continuous casting, the treatment of materials and perfection of heat-protective systems using laser and composite technologies) are given.

1 Regularizing Algorithms for Linear Ill-Posed Problems: Unified Approach.- 2 Iteration Steepest Descent Methods for Linear Operator Equations.- 3 Iteration Conjugate Direction Methods for Linear Operator Equations.- 4 Iteration Steepest Descent Methods for Nonlinear Operator Equations.- 5 Iteration Methods for Ill-Posed Constrained Minimization Problems.- 6 Descriptive Regularization Algorithms on the Basis of the Conjugate Gradient Projection Method.

Erscheint lt. Verlag 9.12.2010
Reihe/Serie Mathematics and Its Applications ; 499
Zusatzinfo IX, 342 p.
Verlagsort Dordrecht
Sprache englisch
Maße 160 x 240 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik Fahrzeugbau / Schiffbau
ISBN-10 90-481-5382-4 / 9048153824
ISBN-13 978-90-481-5382-4 / 9789048153824
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich