Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Die Erforschung des Chaos

Studienbuch für Naturwissenschaftler und Ingenieure
Buch | Softcover
XXII, 790 Seiten
1995
Vieweg & Teubner (Verlag)
978-3-528-06685-7 (ISBN)

Lese- und Medienproben

Die Erforschung des Chaos - John H. Argyris, Gunter Faust, Maria Haase
CHF 109,95 inkl. MwSt
Das Buch stellt die grundlegenden Konzepte der Chaos-Theorie und die mathematischen Hilfsmittel so elementar wie möglich dar. Dies ist die Studienausgabe zu dem von denselben Autoren verfassten Titel "Die Erforschung des Chaos".

Prof. em. Dr. Dr. h. c. mult. John Argyris ist Direktor des Instituts für Computer-Anwendungen an der Universität Stuttgart.

1 Einführung.- 2 Hintergrund und Motivation.- 2.1 Kausalität - Determinismus.- 2.2 Dynamische Systeme - Beispiele.- 2.3 Phasenraum.- 2.4 Erste Integrale und Mannigfaltigkeiten.- 2.5 Qualitative und quantitative Betrachtungsweise.- 3 Mathematische Einführung in dynamische Systeme.- 3.1 Lineare autonome Systeme.- 3.2 Nichtlineare Systeme und Stabilität.- 3.3 Invariante Mannigfaltigkeiten.- 3.4 Diskretisierung in der Zeit.- 3.5 Poincaré-Abbildung.- 3.6 Fixpunkte und Zyklen diskreter Systeme.- 3.7 Ein Beispiel diskreter Dynamik - die logistische Abbildung.- 4 Dynamische Systeme ohne Dissipation.- 4.1 Hamiltonsche Gleichungen.- 4.2 Kanonische Transformationen, Integrierbarkeit.- 4.3 f-dimensionale Ringe (Tori) und Trajektorien.- 4.4 Die Grundzüge der KAM-Theorie.- 4.5 Instabile Tori, chaotische Bereiche.- 4.6 Ein numerisches Beispiel: die Hénon-Abbildung.- 5 Dynamische Systeme mit Dissipation.- 5.1 Volumenkontraktion - eine wesentliche Eigenschaft dissipativer Systeme.- 5.2 Seltsamer Attraktor: Lorenz-Attraktor.- 5.3 Leistungsspektrum und Autokorrelation.- 5.4 Lyapunov-Exponenten.- 5.5 Dimensionen.- 5.6 Kolmogorov-Sinai-Entropie.- 6 Lokale Bifurkationstheorie.- 6.1 Motivation.- 6.2 Zentrumsmannigfaltigkeit.- 6.3 Normalformen.- 6.4 Normalformen von Verzweigungen einparametriger Flüsse.- 6.5 Stabilität von Verzweigungen infolge Störungen.- 6.6 Verzweigungen von Fixpunkten einparametriger Abbildungen.- 6.7 Renormierung und Selbstähnlichkeit am Beispiel der logistischen Abbildung.- 6.8 Ein beschreibender Exkurs in die Synergetik.- 7 Konvektionsströmungen: Bénard-Problem.- 7.1 Hydrodynamische Grundgleichungen.- 7.2 Boussinesq-Oberbeck-Approximation.- 7.3 Lorenz-Modell.- 7.4 Entwicklung des Lorenz-Systems.- 8 Wege zur Turbulenz.- 8.1 Landau-Szenario.- 8.2Ruelle-Takens-Szenario.- 8.3 Universelle Eigenschaften des Übergangs von Quasiperiodizität zu Chaos.- 8.4 Die Feigenbaum-Route über Periodenverdopplungen ins Chaos.- 8.5 Quasiperiodischer Übergang bei fester Windungszahl.- 8.6 Der Weg über Intermittenz ins Chaos.- 8.7 Wege aus dem Chaos, Steuerung des Chaos.- 9 Computerexperimente.- 9.1 Einblick in Knochenumbauprozesse.- 9.2 Hénon-Abbildung.- 9.3 Wiederbegegnung mit dem Lorenz-System.- 9.4 Van der Polsche Gleichung.- 9.5 Duffing-Gleichung.- 9.6 Julia-Mengen und ihr Ordnungsprinzip.- 9.7 Struktur der Arnol'd-Zungen.- 9.8 Zur Kinetik chemischer Reaktionen an Einkristall-Oberflächen.- 9.9 Ein Überblick über chaotisches Verhalten in unserem Sonnensystem.- Farbtafeln.- Literatur.

Erscheint lt. Verlag 14.4.1995
Zusatzinfo XXII, 790 S. 340 Abb., 86 Abb. in Farbe.
Verlagsort Wiesbaden
Sprache deutsch
Maße 170 x 244 mm
Gewicht 1188 g
Themenwelt Technik
Schlagworte Chaos • Energie • Forschung • Ingenieur • Natur • Naturwissenschaft • Norm • Systeme
ISBN-10 3-528-06685-7 / 3528066857
ISBN-13 978-3-528-06685-7 / 9783528066857
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Praxiswissen zu Schimmelpilzschäden in Gebäuden: Mikrobiologie, …

von Irina Kraus-Johnsen

Buch | Hardcover (2024)
Reguvis Fachmedien (Verlag)
CHF 138,60