Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Machine Learning, Deep Learning and AI for Cybersecurity (eBook)

Mark Stamp, Martin Jureček (Herausgeber)

eBook Download: PDF
2025
647 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-83157-7 (ISBN)

Lese- und Medienproben

Machine Learning, Deep Learning and AI for Cybersecurity -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book addresses a variety of problems that arise at the interface between AI techniques and challenging problems in cybersecurity. The book covers many of the issues that arise when applying AI and deep learning algorithms to inherently difficult problems in the security domain, such as malware detection and analysis, intrusion detection, spam detection, and various other subfields of cybersecurity. The book places particular attention on data driven approaches, where minimal expert domain knowledge is required.



This book bridges some of the gaps that exist between deep learning/AI research and practical problems in cybersecurity. The proposed topics cover a wide range of deep learning and AI techniques, including novel frameworks and development tools enabling the audience to innovate with these cutting-edge research advancements in various security-related use cases. The book is timely since it is not common to find clearly elucidated research that applies the latest developments in AI to problems in cybersecurity.




Erscheint lt. Verlag 9.5.2025
Zusatzinfo IX, 647 p. 224 illus., 206 illus. in color.
Sprache englisch
Themenwelt Informatik Netzwerke Sicherheit / Firewall
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Informatik Web / Internet
Mathematik / Informatik Mathematik Statistik
Sozialwissenschaften Politik / Verwaltung
Schlagworte Artificial Intelligence • Deep learning • Intrusion Detection • machine learning • malware analysis • Neural networks • spam detection
ISBN-10 3-031-83157-8 / 3031831578
ISBN-13 978-3-031-83157-7 / 9783031831577
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Technische und organisatorische Schutzmaßnahmen gegen Datenverlust …

von Thomas H. Lenhard

eBook Download (2025)
Springer Vieweg (Verlag)
CHF 34,15
Methodische Kombination von IT-Strategie und IT-Reifegradmodell

von Markus Mangiapane; Roman P. Büchler

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
CHF 45,90
Das Praxishandbuch zu Krisenmanagement und Krisenkommunikation

von Holger Kaschner

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
CHF 38,95