Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
From Counting to Computing - Sergei Abramovich

From Counting to Computing

Ideas for Mathematics Education in Information Age
Buch | Hardcover
200 Seiten
2025
Emerald Publishing Limited (Verlag)
9781837088997 (ISBN)
CHF 129,95 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
From Counting to Computing demonstrates the powerful integration of formal mathematical reasoning, hands-on educational experiments and digital computation to solve problems. Focusing on numeric tables shaped as squares, equilateral & isosceles triangles, offering many opportunities for algebraic generalization in the digital age.
From Counting to Computing demonstrates the powerful integration of formal mathematical reasoning, hands-on educational experiments, and digital computation to solve problems. It focuses on numeric tables shaped as squares, equilateral and isosceles triangles, offering ample opportunities for algebraic generalization in the digital age. Activities are grounded in addition and multiplication tables, polygonal numbers, and Pascal’s triangle. Based on the idea that counting objects arranged in geometric shapes leads to the development of numeric patterns, this book extends this concept to digital computing. Using technology-immune/technology-enabled didactical framework, it blends formal reasoning with digital computation in problem solving and provides a conceptual shortcut to achieving mathematically significant computational outcomes.


From Counting to Computing covers classic topics from arithmetic, number theory, combinatorics, and probability theory. Many historical and cultural origins of mathematical concepts are highlighted, featuring figures like Pythagoras, Aristotle, Heron of Alexandria, Theon, Fibonacci, Gersonides, Pacioli, Cardano, Galilei, Kepler, Descartes, Fermat, Pascal, Spinoza, Leibniz, Jacob Bernoulli, Binet, de Moivre, Lamé, and Lucas.


The final chapter includes problems on the proof of divisibility of integer variable polynomials, motivated by digital computations. Ideal for mathematics teacher education programs and discrete mathematics courses, this book showcases the use of simple algorithms and tools like spreadsheets, Wolfram Alpha, Maple, and Graphing Calculator to achieve sophisticated computational results.

Sergei Abramovich (PhD, Mathematics) has over 30 years of experience teaching more than 4,000 prospective K-12 mathematics teachers and has published 13 books and around 250 journal articles, book chapters, and conference proceedings on mathematics education and mathematics.

Chapter 1. From Concepts to Conceptual Shortcuts to the Use of Technology

Chapter 2. Exploring the Addition and the Multiplication Tables

Chapter 3. Exploring Equilateral Triangles Filled with Integers

Chapter 4. Exploring Isosceles Triangles Filled with Integers

Chapter 5. Exploring Squares Filled with Integers

Chapter 6. Pascal’s Triangle as a Bridge from Combinatorics to Probability

Chapter 7. From Pascal’s Triangle to Fibonacci-Like Polynomials

Chapter 8. Problems Motivated by Digital Computing

Erscheinungsdatum
Verlagsort Bingley
Sprache englisch
Maße 156 x 234 mm
Gewicht 390 g
Themenwelt Schulbuch / Wörterbuch Unterrichtsvorbereitung Unterrichts-Handreichungen
Sozialwissenschaften Pädagogik
ISBN-13 9781837088997 / 9781837088997
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
praxiserprobte Arbeitshilfen für Mentorinnen und Mentoren

von Clemens M. Schlegel

Buch (2025)
Raabe (Verlag)
CHF 48,85
elektronische Lehrmittel in den modernen Unterricht integrieren

von Robert Schoblick

Buch (2024)
Hanser, Carl (Verlag)
CHF 69,95