Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Aurelia aurita (eBook)

Schlüsselart im Planktonsystem der Kieler Bucht
eBook Download: EPUB
2020 | 1. Auflage
148 Seiten
tredition (Verlag)
978-3-347-13474-4 (ISBN)

Lese- und Medienproben

Aurelia aurita -  Gerald Schneider
Systemvoraussetzungen
6,99 inkl. MwSt
(CHF 6,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Das Buch beleuchtet die ökologische Rolle der Ohrenqualle im Plankton der Kieler Bucht und macht deutlich, dass ohne Berücksichtigung dieser wichtigen Art ein Verständnis dieses Ökosystems nicht möglich ist.

Dr. Gerald Schneider, Jahrgang 1954, studierte Biologische und physikalische Ozeanografie sowie Zoologie an der Christian-Albrechts-Universität Kiel, 1981 Diplom, 1985 Promotion. 1981 bis 1998 am Kieler Institut für Meereskunde (heute GEOMAR) und der Biologischen Anstalt Helgoland tätig. Lehrbeauftragter am Institut für Meereskunde. Nach 1998 in einem Wirtschaftsunternehmen. Forschungsfahrten in die Ostsee, das Wattenmeer, den nördlichen, mittleren und tropischen Atlantik, in das Rote Meer und den Indischen Ozean. Forschungsgegenstände: Biologische und hydrografische Rahmenbedingungen der Zooplanktonverteilung und -entwicklung im Meer, Biologie von Quallen, Stofftransporte und -bilanzen im Wattenmeer.

Dr. Gerald Schneider, Jahrgang 1954, studierte Biologische und physikalische Ozeanografie sowie Zoologie an der Christian-Albrechts-Universität Kiel, 1981 Diplom, 1985 Promotion. 1981 bis 1998 am Kieler Institut für Meereskunde (heute GEOMAR) und der Biologischen Anstalt Helgoland tätig. Lehrbeauftragter am Institut für Meereskunde. Nach 1998 in einem Wirtschaftsunternehmen. Forschungsfahrten in die Ostsee, das Wattenmeer, den nördlichen, mittleren und tropischen Atlantik, in das Rote Meer und den Indischen Ozean. Forschungsgegenstände: Biologische und hydrografische Rahmenbedingungen der Zooplanktonverteilung und -entwicklung im Meer, Biologie von Quallen, Stofftransporte und -bilanzen im Wattenmeer.

1. Die Planktondynamik in der Kieler Bucht

Die Entwicklung, das Auftreten und die Wirkung der Medusen vollzieht sich Rahmen der Planktondynamik der Kieler Bucht, die einem ausgesprochenen jahreszeitlichen Wechsel unterliegt. Es ist daher zunächst notwendig, diese Rahmenbedingungen kurz erörtern.

Abb. 1 gibt eine vereinfachte phänomenologische Darstellung der Planktonentwicklung in der Kieler Bucht. Die visualisierten allgemeinen Abläufe entsprechen denjenigen, die in gemäßigten und borealen Küstengewässern üblich sind, die Details jedoch grenzen die Kieler Bucht von anderen ähnlich strukturierten pelagischen Küstensystemen ab. Als Referenzartikel seien genannt: Jochem 1989, Lenz 1974, Martens 1976, Smetacek 1985, Smetacek et al 1984, Weiße 1985 und die jeweils darin zitierte Literatur.

Abb. 1: Prinzipielle saisonale Entwicklung im Planktonsystem der Kieler Bucht.

Der Startpunkt der jährlichen Planktonentwicklung liegt im Winter, der durch eine kalte, vollständig durchmischte Wassersäule gekennzeichnet ist. Die pflanzenrelevanten Nährstoffe weisen die jeweiligen Jahreshöchstwerte auf. Die Stickstoffkomponenten machen ca. 15 – 18 μmol dm-3 aus, wobei etwa 2/3 auf Nitratstickstoff entfallen. Phosphat-P ist mit ca. 1 μmol dm-3 vertreten und die für die Diatomeenentwicklung notwendigen Silikatkonzentration liegen bei etwa 20μmol dm-3.

Sowohl die Bestände an Phyto- und Zooplankton sind zu dieser Zeit sehr niedrig, das Zooplankton weist z. B. Werte unter nur 0,1 gC m-2 auf (bezogen auf die durchschnittliche Wassertiefe von 25 m, Schneider 1990 a). Speicherstoffe in Form von Öltröpfchen werden aufgebraucht und finden sich immer seltener in den untersuchten Copepoden. Die Produktion an Pflanzenmaterial ist in erster Linie lichtlimitiert, was vor allem der beständigen Durchmischung und der dadurch hervorgerufenen langen Verweildauer in ungünstigen Lichtklimaten geschuldet ist.

Mit zunehmender Helligkeit, der Stabilisierung der Wassersäule und der damit einhergehenden Verringerung der Durchmischungstiefe im Frühjahr entwickelt sich das Phytoplankton drastisch, es entsteht die bekannte Frühjahrsblüte. Diese Massenentfaltung wird vornehmlich durch Diatomeen getragen. Zu nennen sind Skeletonema costata, Detonula confervacea, Achnantes taeniata und diverse Chaetoceros – Arten. Die tägliche Primärproduktion liegt in dieser Phase bei 0,4 gC m-2 d-1, wobei der Maximalbestand der Blüte zwischen einzelnen Jahren erstaunlich regelmäßig bei rund 8 gC m-2 liegt. Die Gesamtprimärproduktion für diese Zeitspanne liegt bei rund 20 gC m-2.

Parallel dazu vermehren sich insbesondere Ciliaten stark, die als Hauptherbivore im Frühjahr zu nennen sind, denn das größere Zooplankton reagiert noch nicht auf die Blüte durch gesteigerte Reproduktion.

Dementsprechend wird die Blüte nicht durch Wegfraß, sondern durch nahezu vollständige Nutzung der Nährstoffe terminiert und der größte Teil der Pflanzenbiomasse sedimentiert auf den Meeresboden. Dadurch werden Nährstoffe dem freien Wasser entzogen und der Bodenremineralisierung zugeführt. Nach Ende der Frühjahrsblüte sind die Phosphat- und Silikatkonzentrationen im freien Wasser fast an der Nachweisgrenze, ähnliches gilt für Nitratstickstoff, während NH4-N mit Konzentrationen um 2 μmol dm-3 die einzige bedeutendere Stickstoffquelle ist.

Erst mit einer deutlichen Verzögerung wächst etwa im April / Mai das Zooplankton heran und erreicht Bestände um 0,8 – 1,0 gC m-2. Das Nahrungsangebot ist geringer, aber steht langfristig konstanter zur Verfügung, denn die Primärproduktion ist weiterhin mit 0,4 gC m-2 d-1 relativ hoch. In dieser Zeit wachsen auch die Ohrenquallen sehr schnell heran, in der Regel ist ihr Nahrungsbedarf aber nicht so hoch, dass die bald eintretende Reduktion der Zooplanktonbestände alleine darauf zurückgeführt werden kann.

Mit Ende des Frühjahres etabliert sich in der Wassersäule eine recht stabile Zweischichtung, die durch eine scharfe, vor allem temperaturbedingte Sprungschicht gekennzeichnet ist.

Während in Bodennähe die Nährstoffkonzentrationen bedingt durch Remineralisierungseffekte und z. T. anoxische Verhältnisse langsam ansteigen, ist die Oberflächenschicht weiterhin nährstoffarm, allerdings mit etwas höheren Werten als direkt nach der Frühjahrsblüte. Gelegentliche Injektion von nährstoffhaltigem Tiefenwasser bereichern die Oberflächenschicht sporadisch. Dennoch spielen insbesondere die sog. „regenerierten“ Nährstoffe, also solche, die über den Stoffwechsel der Organismen bereitgestellt werden und im System zirkulieren (sog. „kleiner Nährstoffkreislauf“) die wichtigste Rolle in dieser Periode

Ungeachtet dieser augenscheinlich eher ungünstigen Rahmenbedingungen erreicht die Primärproduktion ihr Leistungsoptimum mit etwa 0,8 gC m-2 d-1 und die Gesamtproduktion beläuft sich auf etwa die Hälfte der Jahresprimärproduktion. Dies ist vor allem den diversen Phytoplanktongruppen geschuldet, vor allem kleinen Flagellaten, Picocyanobakterien, aber auch autotrophen Dinoflagellaten der Gattungen Gyrodinium, Gymnodinium, Scripsiella und Ceratium.

Das Zooplankton zeigt während des Sommers seine größte Vielfalt. Die Copepoden Acartia longiremis, A. bifilosa und Centropages hamatus erreichen ihr Populationsmaximum, daneben finden sich aber auch Vertreter der Gattung Pseudocalanus und Paracalanus sowie Oithona similis. Dazu kommen Cladoceren, Appendicularien, sehr viele Muschel-, Schnecken- und Bryozoenlarven. Die Gesamtbiomasse dieser Organismen ist mit etwa 0,5 gC m-2 aber deutlich geringer als im späten Frühling.

Der Sommer ist auch die Zeit mit den höchsten Beständen an Aurelia aurita, bei allerdings hoher Variabilität. In quallenreichen Jahren hält die Biomasse der Aurelien mit Werten zwischen 0,5 – 1 gC m-2 allem anderen Zooplankton die Waage und kann sie sogar gelegentlich deutlich übertreffen, während in besonders quallenarmen Jahren nur etwa 0,05 – 0,2 gC m-2 in den Aurelien gebunden sind. Als Mittel aus 10 Beobachtungsjahren ergibt sich ein durchschnittlicher Bestand von 0,5 gC m-2, also in etwa der gleiche Wert wie für das andere Zooplankton zusammen.

Der Übergang zum Herbst vollzieht sich durch ein allmähliches Aufbrechen der Wasserschichtung und eine allgemein höhere Nährstoffverfügbarkeit. Die im Zuge der Frühjahrsblüte abgesunkene organische Substanz ist im Wesentlichen „aufgearbeitet“ und in den Sedimenten sind hohe Nährstoffkonzentrationen vorhanden.

Bedingt durch gelegentliche anoxische Bedingungen, Bioturbation, turbulente Umschichtungen und spezifische hydrografische Bedingungen werden die nährstoffreichern Interstitialwasser in die freie Wassersäule gemischt. Zu nennen ist unter anderem der Einstrom salzreicher Wassermassen aus dem Belt und dem Kattegat, die im Spätsommer und im Frühherbst durch die Zunahme der Westwindkomponenten ausgelöst wird.

Dies stabilisiert zunächst zwar die Schichtung der Wassersäule durch eine Halokline, das „schwere“ salzreiche Wasser drückt aber auch die weniger salzreichen Interstitialwässer aus dem Sediment, sodass es zu der Anreicherung mit Nährstoffen im freien Wasser der Bucht kommt.

In der Folge kommt es zu einer weiteren Massenvermehrung des Phytoplanktons, der „Herbstblüte“, die vor allem durch Ceratium-Arten, in manchen Fällen aber auch durch Diatomeen hervorgerufen wird. Die Primärproduktion ist mit 0,6 gC m-2 d-1 immerhin noch höher als zur Zeit der Frühjahrsblüte. Im Wesentlichen verhindert eine noch optimale Nährstoffversorgung einen höheren Bestandsaufbau als im Frühjahr.

Das Metazooplankton und die Protozoen reagieren gleichfalls mit noch einmal erhöhten Beständen, bevor sich zum Winter die niedrigen Populationsdichten einstellen. Diese Herbstblüte ist insbesondere für die Copepoden bedeutsam, da sich hier letztmalig die Gelegenheit bietet, die Reservestoffe in Form von Öltröpfchen anzulegen oder auszubauen.

Der Wegfraß an Phytoplankton ist aber insgesamt eher gering und der Großteil der Biomasse sinkt, ähnlich wie bei der Frühjahrsblüte, zu Boden.

Tab. 1: Nach Smetacek et. al. (1984) können innerhalb des saisonalen Produktionszyklus – den Winter nicht mitgerechnet – vier Phasen unterschieden werden:

Die Ohrenquallen sterben zu dieser Zeit ab, nachdem sie schon länger Degenerationserscheinungen gezeigt haben. Sie sinken zum Boden und stellen damit einen hohen Eintrag an organische Substanz in das Sediment dar. Dieses ist aber sehr fleckenhaft verteilt.

Mit Abnahme der Tageslänge, abkühlenden Wassertemperaturen und z. T. heftigen Stürmen geht die Kieler Bucht in die durch geringe biologische Aktivität gekennzeichnete Winterphase...

Erscheint lt. Verlag 26.8.2020
Verlagsort Ahrensburg
Sprache deutsch
Themenwelt Sachbuch/Ratgeber Natur / Technik Naturwissenschaft
Technik
Schlagworte Aurelia aurita • biological oceanography • Biologische Ozeanografie • Key predator • Key stone predator • Key stone species • Kiel Bight • Kieler Bucht • Kieler Förde • Marine Biology • Meeresbiologie • Ohrenqualle • Ökologie • Plankton • Qualle • Quallen • Schlüsselart
ISBN-10 3-347-13474-5 / 3347134745
ISBN-13 978-3-347-13474-4 / 9783347134744
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich