Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Problem Solving Through Recreational Mathematics (eBook)

eBook Download: EPUB
2012
480 Seiten
Dover Publications (Verlag)
9780486131740 (ISBN)

Lese- und Medienproben

Problem Solving Through Recreational Mathematics - Bonnie Averbach, Orin Chein
Systemvoraussetzungen
15,99 inkl. MwSt
(CHF 15,60)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Fascinating approach to mathematical teaching stresses use of recreational problems, puzzles, and games to teach critical thinking. Logic, number and graph theory, games of strategy, much more. Includes answers to selected problems. Free solutions manual available for download at the Dover website.
Historically, many of the most important mathematical concepts arose from problems that were recreational in origin. This book takes advantage of that fact, using recreational mathematics — problems, puzzles and games — to teach students how to think critically. Encouraging active participation rather than just observation, the book focuses less on mathematical results than on how these results can be applied to thinking about problems and solving them. Each chapter contains a diverse array of problems in such areas as logic, number and graph theory, two-player games of strategy, solitaire games and puzzles, and much more. Sample problems (solved in the text) whet readers' appetites and motivate discussions; practice problems solidify their grasp of mathematical ideas; and exercises challenge them, fostering problem-solving ability. Appendixes contain information on basic algebraic techniques and mathematical inductions, and other helpful addenda include hints and solutions, plus answers to selected problems. An extensive appendix on probability is new to this Dover edition. Free solutions manual available for download at the Dover website.

Preface; To the Reader; Acknowledgments1. Following the Clues; Sample problems; Which chart or Diagram to Choose; Presenting a Solution; Some Steps in Problem Solving; Tree Diagrams; The Multiplication Principle; Simplification; The Chapter in Retrospect; Exercises2. Solve It With Logic; Sample Problems; Statements; Variables and Connectives; Negation; “And”—Conjunction; “Or”—Disjunction; Conditional and Biconditional Statements; Drawing Conclusions; Compound Statements; Logical Implication and Equivalence; Arguments and Validity; The Chapter in Retrospect; Exercises3. From Words to Equations: Algebraic Recreations; Sample Problems; Introducing Variables; The Chapter in Retrospect; Exercises4. Solve It With Integers, Some Topics from Number Theory; Sample Problems; Diophantine Equations; Divisibility; Prime Numbers; The Infinitude of Primes; The Sieve of Eratosthenes; More About Primes; Linear Diophantine Equations; Division With Remainders; Congruence; Casting Out Nines; Solving Linear Congruences; Solving Linear Diophantine Equations; The Chapter in Retrospect; Exercises5. More About Numbers: Bases and Cryptarithmetic; Sample Problems; Positional Notation; Changing Bases; Addition and Multiplication in Other Bases; Cryptarithmetic; The Chapter in Retrospect; Exercises6. Solve It With Networks: An Introduction to Graph Theory; Sample Problems; Graphs; Eulerian Paths and Circuits; Odd and Even Vertices; More Than Two Odd Vertices; Directed Graphs; Hamiltonian Circuits; The Knight’s Tour; Other Applications; Coloring Graphs and Maps; The Chapter in Retrospect; Exercises7. Games of Strategy for Two Players; Sample problems; Chance-Free Decisionmaking; Games of Perfect Information; Finiteness; The Existence of Winning Strategies; Position--State of the Game; The State Diagram of a Game; How Do We Find a Winning Strategy?; Finding a Winning Strategy by Working Backward; Finding Winning Strategies by Simplifying a Game; Finding Winning Strategies With a Frontal Assault; How Many Possibilities Need Be Considered?; Symmetry as a Limiting Factor; Déjà Vu—We’ve Seen it Before; The Game of Nim; Pairing Strategies; Variations of a Game; The Chapter in Retrospect; Exercises8. Solitaire Games and Puzzles; Sample Problems; The Tower of Brahma; Dissection Problems; Polyominoes; Soma; Peg Solitaire; The Fifteen Puzzle; Even and Odd Permutations; Coloring and the 15 Puzzle--A Second Approach; Colored Cubes; Colored Cubes--A Second Approach; The Chapter in Retrospect; Exercises9. Potpourri; Decimation; Coin Weighing; Shunting; Syllogisms; Grab Bag; The Book in RetrospectAppendix A. Some Basic Algebraic TechniquesAppendix B. Mathematical InductionAppendix C. Probability Bibliography; Hints and Solutions; Answers to Selected Problems; Index

Erscheint lt. Verlag 15.3.2012
Reihe/Serie Dover Books on Mathematics
Dover Math Games & Puzzles
Sprache englisch
Maße 170 x 170 mm
Gewicht 708 g
Themenwelt Sachbuch/Ratgeber Freizeit / Hobby Spielen / Raten
Mathematik / Informatik Mathematik
ISBN-13 9780486131740 / 9780486131740
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich