Neuroanatomy of the Oculomotor System (eBook)
584 Seiten
Elsevier Science (Verlag)
978-0-08-046125-0 (ISBN)
This volume in the Progress in Brain Research series features reviews on the functional neuroanatomy and connectivity of the brain areas involved in controlling eye movements. Oculomotor control of the eyes is now the subject of many research projects and advances in this field are relevant to understanding motor control in general.
Cover 1
Neuroanatomy of the Oculomotor System 4
Contents 10
List of Contributors 6
Preface 8
Present concepts of oculomotor organization 12
Introduction 12
Saccades 13
General characteristics 13
Paramedian pontine reticular formation 13
Pathways from PPRF to motoneurons for horizontal eye movements 15
Rostral interstitial nucleus of the MLF 16
Pontine nuclei (PN) and nucleus reticularis tegmenti pontis (NRTP) 16
Superior colliculus 17
Cortex 17
Frontal cortex 17
Frontal eye fields 18
Supplementary eye field 18
Dorsolateral prefrontal cortex 19
Cingulate eye field 19
Posterior cortex 19
Area 7A 19
Lateral intraparietal area 19
Medial parietal area 19
Thalamus, basal ganglia 20
Thalamus 20
Basal ganglia 20
Cerebellum 20
Summary 21
Smooth pursuit eye movements 22
General characteristics 22
Cortex 22
Posterior cortex 22
Occipital cortex 22
Middle temporal visual area (MT) 22
Medial superior temporal visual area (MST) 23
Parietal cortex 23
Frontal cortex 24
Frontal eye fields 24
Supplementary eye field 24
Basal ganglia, thalamus 24
Dorsolateral pontine nuclei, nucleus reticularis tegmenti pontis, and superior colliculus 24
Cerebellum 25
Floccular region 25
Oculomotor vermis and fastigial oculomotor region 25
Other cerebellar structures 26
Vestibular nuclei 26
Summary 26
The vestibulo-ocular reflex 26
General characteristics 26
Canals 27
Otoliths 28
Vestibular nuclei 28
Commissural pathways 29
Medial longitudinal fasciculus (MLF) and other ascending pathways 30
Cerebellum 30
Floccular region 30
Nodulus and ventral uvula 31
Summary 31
Optokinetic response 31
General characteristics 31
Pretectum and nuclei of the accessory optic tract 33
Vestibular nuclei 33
Cerebellum 33
Summary 34
Gaze holding „ the neural integrator 34
General characteristics 34
Nucleus praepositus hypoglossi and medial vestibular nucleus 34
Interstitial nucleus of Cajal 34
Paramedian tract neurons 35
Floccular region 35
Summary 35
Vergence eye movements 35
General characteristics 35
Brainstem 36
Cortex, cerebellum 36
Summary 37
Eye movements in three dimensions: Listings law„ Pulleys 37
General characters 37
Pulleys 38
Central nervous structures 38
Summary 39
Acknowledgments 40
References 40
Biological organization of the extraocular muscles 54
Introduction 54
EOM and orbital gross anatomy 55
Medial rectus and lateral rectus muscles 56
Superior rectus and inferior rectus muscles 57
Superior oblique muscle 57
Inferior oblique muscle 58
Levator palpebrae superioris muscle 58
Accessory EOMs 58
EOM pulleys 59
The functional context of the EOMs 59
Compartmental organization of EOM 61
Traditional skeletal muscle fiber types 62
Overview of EOM fiber types 63
Detailed organization of EOM fiber types 65
The orbital singly innervated fiber type 65
The orbital multiply innervated fiber type 69
The global red singly innervated fiber 71
The global intermediate singly innervated fiber 71
The global white singly innervated fiber 72
The global multiply innervated fiber 72
Differences in EOM fiber types in the same and different species 72
An integrated view of EOM biology 73
Insights from EOM and oculomotor physiology 73
Insights from EOM molecular biology 76
Extraocular muscle development 78
EOM exhibits distinct myoblast types 78
Epigenetic factors and EOM development 80
Extraocular muscle and disease 80
Muscular dystrophy 80
Myasthenia gravis 81
Mitochondrial myopathies 81
Strabismus 82
Commentary 83
Acknowledgments 83
References 84
Sensory control of extraocular muscles 92
Introduction 92
Layered structure of eye muscles 93
Proprioceptors 93
Muscle spindles 93
Muscle spindles in eye muscles 93
Muscle spindles in skeletal muscle 94
Comparison of extraocular and skeletal muscle spindles 94
Palisade endings 95
Golgi tendon organs 98
A possible role for palisade endings and the global layer MIFs 100
Acknowledgments 102
References 102
The extraocular motor nuclei: organization and functional neuroanatomy 106
Introduction 106
General features of motoneurons 107
Morphometry of motoneurons 107
Oculomotor nucleus 107
Organization of motoneuron subgroups 107
Motoneurons of singly and multiply innervated muscle fibers 111
Putative role of MIF and SIF motoneurons 111
Oculomotor interneurons 113
Central caudal nucleus 114
Edinger–Westphal nucleus 114
Trochlear nucleus 116
Tensor tympani motoneurons 116
Abducens nucleus 116
Abducens internuclear neurons 117
A cell group of the paramedian tracts 118
Accessory abducens nucleus 118
Afferent pathways 119
Vestibular afferents 119
Secondary vestibulo-ocular neurons 119
Non-second-order vestibulo-ocular neurons 120
Ascending tract of Deiters 121
Paramedian pontine reticular formation 122
Rostral interstitial nucleus of the MLF 122
Interstitial nucleus of Cajal 122
Nucleus prepositus hypoglossi 123
Supraoculomotor area 123
Central mesencephalic reticular formation 124
Pretectum 124
Histochemistry of motoneurons 125
Transmitters in oculomotor and trochlear nuclei 125
Transmitters in abducens nucleus 125
Calcium-binding proteins 126
Other factors (neurotrophins, membrane receptors, etc.) 126
Acknowledgments 127
References 128
The reticular formation 138
Introduction 138
Mesencephalic reticular formation 140
Brainstem regions 140
Rostral interstitial nucleus of the medial longitudinal fascicle 140
Connections 140
M-group 142
Connections 142
Interstitial nucleus of cajal 143
Connections 143
Central mesencephalic reticular formation 144
Connections 144
Nucleus of the posterior commissure 144
Connections 146
Histochemistry of the mesencephalic reticular formation 146
Lesions „ clinical data 147
Proposed circuitry for the generation of vertical saccades 148
Paramedian pontine reticular formation 149
Brainstem regions 149
Nucleus reticularis pontis oralis 149
Nucleus reticularis pontis caudalis 149
Connections 149
Nucleus reticularis tegmenti pontis 151
Connections 151
Nucleus raphe interpositus 151
Connections 152
Histochemistry of the pontine reticular formation 152
Lesion studies „ clinical data 154
Proposed circuitry for the generation of horizontal saccades 155
Medullary reticular formation 156
Brainstem regions 156
Nucleus paragigantocellularis dorsalis 156
Connections 156
Nucleus reticularis gigantocellularis 156
Connections 156
PMT cell groups 157
Connections 157
Histochemistry of the medullary reticular formation 158
Lesions „ clinical data 158
Acknowledgments 159
References 159
The Anatomy of the vestibular nuclei 168
Anatomy 168
Location of the vestibular nuclei in the brainstem 168
Other regions receiving direct innervation from the vestibular branch of the eighth nerve 169
Cytoarchitectural subdivisions morphology of intrinsic neurons
Superior vestibular nuclei 170
Peripheral and central 170
Somatodendritic morphology of SVN neurons 170
Dorsal LVN (dLVN Deiters’ nucleus)
Ventral LVN 173
Medial vestibular nucleus 173
Marginal subnucleus 175
Descending vestibular nucleus 175
Other vestibular nuclei 175
y-group 175
e-group 175
Interstitial nucleus of the vestibular nerve 175
Group x 176
Group z 176
Ultrastructure of vestibular neurons 176
Distribution of putative neurotransmitters and other chemical markers 176
Excitatory amino acids 176
Transmitters 176
Receptors 177
GABA and GABA receptors 179
Glycine and glycine receptors 180
Other putative neurotransmitters/modulators 181
Nitric oxide 182
Calcium-binding proteins 182
Vestibular afferents 183
Vestibular nerve inputs to the vestibular nuclei 183
Gross anatomy of the eighth nerve 183
Branching patterns of vestibular afferents 183
Overall projection patterns of different end organ nerves 183
Ultrastructure of vestibular afferent synapses 185
Neurotransmitters and co-transmitters of the primary vestibular afferents 186
Characteristics of vestibular nerve inputs to vestibular neurons 187
Semicircular canal inputs to vestibular neurons 187
Convergent input from different endorgans 187
Reafference through inhibitory interneurons 188
Spinal and brainstem nonvestibular afferents to the vestibular nuclei 188
Spinal cord afferents to the vestibular nuclei 188
Oculomotor inputs to the vestibular nuclei 189
Reticular and nPH projections 189
Cerebellar afferents to the vestibular nuclei 189
Cerebellar flocculus/paraflocculus 189
Nodulus/uvula 189
Cerebral cortical afferents to the vestibular nuclei 189
Local circuits within and between the vestibular nuclei 190
Vestibular commissural pathways 190
Anatomical organization 190
Vestibular commissural neurons 191
Interneurons within vestibular nuclei 191
Axo-axonic synapses related to intrinsic vestibular connections 191
Vestibular efferents 192
Vestibulo-spinal pathways 192
Vestibulo-collic pathways 192
Medial vestibulo-spinal tract 192
Lateral vestibulo-spinal tract 193
Vestibulo-ocular pathways 193
Semicircular canal evoked VOR 193
Organization of VOR pathways 195
The horizontal VOR 196
The vertical VOR 197
Otolith-ocular reflexes „ tilt and translation 198
Vestibulo-autonomic pathways 199
Vertigo, emesis, vestibular baroreceptor, and hemodynamic interactions 199
Vestibulo-cerebellar pathways 199
Sources of mossy fiber afferents carrying vestibular signals 199
Vestibular nerve 199
Vestibular nuclei 199
Nuclei of the paramedian tracts 199
Vestibular inputs to the inferior olive 200
Vestibulo-thalamo-cortical pathways 200
Physiological signals transmitted by secondary vestibular neurons 201
References 202
Nucleus prepositus 216
Introduction 216
Cytoarchitecture and chemoarchitecture of the primate prepositus nucleus 216
Morphological characteristics of PH neurons 219
Neurotransmitters of the PH 221
Gamma-aminobutyric acid 222
Glycine 223
Glutamate and aspartate 223
Acetylcholine 224
Serotonin„5-HT 224
Neuropeptides 224
Nitric oxide 225
Afferent projections to the PH 225
Origin of afferent inputs to the PH 226
Responses of PH neurons to sensory stimuli 228
Firing behavior of PH neurons related to eye movements 228
Efferent projections of the PH 229
Projections to the cerebellum 229
Projections to the medulla 231
Projections to the extraocular motor nuclei 232
The role of the PH in the oculomotor integrator 232
Projections to the pontine and mesencephalic reticular formation 233
Projections to the superior colliculus and pretectum 233
Projections to the thalamus 234
The role of the PH in the control of gaze 234
References 236
Oculomotor cerebellum 242
Introduction 242
The oculomotor vermis: anatomy 242
Climbing fiber projection to the oculomotor vermis from inferior olive 243
Mossy fiber projections to the oculomotor vermis 243
Efferent projections of the oculomotor vermis 245
Oculomotor vermis: physiology 246
Microstimulation-evoked eye movements 246
Extraocular proprioception 246
Non-extraocular proprioception in oculomotor vermis 246
Effects of lesions of the oculomotor vermis 247
Summary 248
Anatomy of uvula–nodulus 248
Climbing fiber zones in the uvula– nodulus 248
Mossy fiber projections to the uvula– nodulus 250
Projections from uvula– nodular purkinje cells 252
Physiology of uvula–nodulus 253
Vestibular stimulation modulates the activity of purkinje cells in the uvula– nodulus 253
Antiphasic discharge of climbing fiber responses and simple spikes of purkinje cells 255
Dispersal of vestibular mossy fiber afferent activity within the uvula– nodulus 255
Golgi cells 256
Unipolar brush cells 256
Basket cells 256
Stellate cells 256
Lugaro cells 257
Effects of lesions of the uvula– nodulus on oculomotor behavior 257
Flocculus and paraflocculus: anatomy 260
Structural definitions of the flocculus and paraflocculus 260
Climbing fiber and cortico-nuclear projection zones in the flocculus and paraflocculus 260
Mossy fiber projections to the flocculus and the paraflocculus 264
Summary 267
Flocculus physiology 267
Topography of optokinetic climbing fiber zones in the flocculus 267
Zonal basis of eye movements evoked by microstimulation of cerebellar white matter 269
Physiological definitions of floccular lobe in monkeys 269
Effects of floccular and ventral parafloccular lesions on oculomotor behavior 270
Conclusions 271
Acknowledgments 272
References 272
Inferior olive and oculomotor system 280
Introduction 280
Representation of optokinetic signals in the dorsal cap of kooy 281
Divisions of the DC based on optokinetic responses 281
Nucleus of the optic tract and accessory optic system 285
Nucleus prepositus hypoglossi 285
Topographic projections to the flocculus and nodulus from the caudal DC 285
Microlesions of caudal DC reduce gain of horizontal optokinetic reflex evoked from stimulation of the contralateral eye 287
Eye movements evoked by microstimulation of caudal DC 287
Interactions between the inferior olive, cerebellum and the medial vestibular nucleus 287
Plasticity of responses in DC neurons 288
Vestibular inferior olive: ß-nucleus and DMCC 292
Descending inhibitory vestibular projections to the ß-nucleus and DMCC from the ipsilateral parasolitary nucleus 292
Descending excitatory vestibular projections to the ß-nucleus and DMCC from the contralateral dorsal Y-group 292
Physiology of Psol and Y-group neurons 292
Physiological representation of the vestibular system in the ß-nucleus and DMCC 294
Collaterals of climbing fibers to cerebellar nuclei and vestibular nuclei 294
Oscillations in CFRs 295
Electrotonic coupling in the inferior olive and synchronous discharge 295
Summary 297
Acknowledgments 298
References 298
The oculomotor role of the pontine nuclei and the nucleus reticularis tegmenti pontis 304
Introductory remarks 304
The primate pontine nuclei 305
The cerebro-pontine projection 305
General considerations 305
The pontine projections from frontal areas 306
The pontine projections from parietooccipital areas 308
The organization of cerebro-pontine terminations within the PN 309
The ponto-cerebellar projection 309
The pontine projections to the cerebellar cortex: retrograde tracing 310
The pontine projections to the cerebellar cortex: anterograde tracing 311
The pontine projections from the deep cerebellar nuclei 312
The nucleus reticularis tegmenti pontis 312
Projections from the superior colliculus to the PN and the NRTP 315
The role of the PN in the generation of smooth pursuit eye movements 315
Physiological properties 315
Lessons from lesions 316
The role of the PN in the generation of the ocular following response and the optokinetic reflex 318
The role of the PN in saccades 321
Oculomotor functions of the NRTP 322
The role of the NRTP in saccadic eye movements 326
The role of the NRTP in smooth pursuit eye movements 326
References 328
The mammalian superior colliculus: laminar structure and connections 332
Introduction 332
Layers and cells 333
Lamination 333
Cell types 333
Connectivity 335
Sensory inputs 335
Visual sensory connections „ retina 336
Visual sensory connections „ cortex 337
Auditory sensory connections „ brainstem 339
Pinna control 340
Somatosensory connections „ brainstem and spinal cord 340
Multisensory convergence „ cortical and noncortical influences 345
Connectivity within the superior colliculus 346
Intralaminar connections 346
Interlaminar connections 347
Tectotectal connections 348
Superficial layer connections with midbrain structures 349
Parabigeminal nucleus 349
Pretectal complex 349
Superficial layer connections with the visual thalamus 350
Dorsal lateral geniculate 350
Ventral lateral geniculate 351
Pulvinar/lateral posterior complex 352
Collicular connections to brainstem saccade circuits 354
Paramedian pontine reticular formation 354
Nucleus prepositus hypoglossi 356
Central mesencephalic reticular formation 357
Rostral interstitial nucleus of the medial longitudinal fasciculus 357
Interstitial nucleus of Cajal 357
Nucleus of the posterior commissure 358
Nucleus raphe interpositus, omnipause region 358
Direct projections to motoneurons and the supraoculomotor area 358
Collicular connections to head movement regions 359
Spinal cord 359
Medullary reticular formation 360
Collicular connections with other motor systems 361
Cerebellar connections 361
Basal ganglia connections 363
Zona incerta connections 365
Connections with the cortical eye fields 366
Collicular inputs from nonspecific systems 368
Summary 371
Acknowledgments 374
References 375
The pretectum: connections and oculomotor-related roles 390
Introduction 390
The pretectal nuclei: anatomy and retinal projections 391
Retinopretectal projections: anterograde studies 393
Retinopretectal projections: conventional retinal ganglion cells 393
Retinopretectal projections: intrinsically photoreceptive retinal ganglion cells 394
Connections and roles of the NOT 395
Nonretinal afferents 395
Cortex 395
Ventral thalamus 396
Midbrain 396
Efferent projections 396
Descending projections 396
Accessory optic system 396
Superior colliculus 397
Edinger-westphal complex/C subgroup of the oculomotor nucleus 398
Pontine nuclei (NRTP, DLPN, MPN) 398
Inferior olive 398
Medial vestibular nucleus/nucleus prepositus hypoglossi 398
Ascending projections 398
Dorsal lateral geniculate nucleus 398
Ventral thalamic nuclei 399
Other thalamic nuclei 399
Functional considerations 399
Characteristics of NOT neurons 399
Role of the NOT in optokinetic nystagmus and other eye movements 401
Connections and roles of the PON 402
Nonretinal afferents 402
Cortex 402
Ventral thalamus 402
Midbrain 402
Efferent projections 403
Descending projections 403
Edinger– westphal complex 404
Accessory optic nuclei 404
Facial nucleus 404
Ascending projections 405
Ventral thalamic nuclei 405
Suprachiasmatic nucleus 405
Functional considerations 405
Characteristics of PON luminance neurons 405
Role of the PON in the pupillary light reflex 406
Potential role of cortico-pretectal projections in the pupillary light reflex 406
Other proposed oculomotor functions of the PON 408
Acknowledgments 409
References 409
The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function 418
Introduction 418
Features of the accessory optic pathways and nuclei 419
Topography and nomenclature (Fig. 1A–C) 419
Ontogeny 421
Phylogeny 422
Nonmammalian species 422
Mammalian species 423
Afferents of the accessory optic nuclei 424
Retinal afferents (Figs. 1 and 2) 424
Cerebral cortical afferents (Figs. 2 and 3) 425
AOS/NOT nuclear interconnections and other afferents (Fig. 2) 427
Is the nucleus of the optic tract an accessory optic nucleus? 428
Efferents of the AOS nuclei 428
Efferents to the inferior olive (Figs. 2, 4– 7) 428
Other efferents (Figs. 2, 4– 7, 8) 432
Preoculomotor projections of the AOS 432
Precerebellar projections of the AOS 433
Reticular formation projections of the AOS 433
Neurotransmitters and modulators 435
GABA (Fig. 9) 435
Opioid peptides 436
Calcitonin gene-related peptide, neuropeptide Y, and vasoactive intestinal peptide 437
Functional considerations 438
Response properties of AOS neurons 438
Metabolic and lesion studies (Fig. 10) 439
AOS and spatial cognitiond 440
Acknowledgments 443
References 443
Oculomotor-related pathways of the basal ganglia 452
Introductory remarks 452
The working hypothesis 452
Corticostriate projections 452
Anterograde transport experiments 452
Retrograde transport experiments 457
Strio-pallidal, entopeduncular, and nigral projections 459
Nigrotectal projections 459
Tecto-thalamostriatal projections 461
Corticotectal-nigrotectal interactions 464
Summary and conclusions 468
Acknowledgments 470
References 470
Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements 472
Introduction and overview 472
Functional characteristics of eye fields 474
Frontal eye field 475
Parietal eye field 477
Supplementary eye field 480
Medial superior temporal area 480
Prefrontal eye field 480
Precuneus (PCun or 7m) 481
Evidence from functional imaging experiments 481
Cytoarchitecture 482
Subcortical connections of eye fields 483
Frontal eye field 483
Parietal eye field 487
Supplementary eye field 487
Medial superior temporal area 488
Prefrontal eye field 488
Precuneus (area 7m) 488
Thalamic connections and feedback circuits 489
Cortico-cortical connections of eye fields 493
Frontal eye field 493
Parietal eye field 496
Supplementary eye field 497
Medial superior temporal area 499
Prefrontal eye field 499
Precuneus (area 7m) 500
Summary 500
Acknowledgments 502
References 502
MRI and fMRI analysis of oculomotor function 514
Introduction 514
Principles of fMRI 516
Definition of cortical oculomotor regions in humans 521
Frontal eye field 521
Supplementary eye field 524
Parietal eye field 525
Cingulate eye field 526
Area MT and MST 527
Functional organization of saccade and pursuit systems 529
Functional organization of the vestibular and optokinetic system in humans 530
Eye movements and attention 532
References 534
Long descending motor tract axons and their control of neck and axial muscles 538
Introduction 538
Classical and current view of long descending motor tract systems 538
General organization of the motor nuclei in the spinal cord 540
General organization of interneurons in the spinal cord 540
Classification of long descending motor systems 541
New aspects of long descending motor tract axons 541
Basic organization of axial muscles in the neck and back 542
General arrangements of the epaxial musculature 542
Organization of the motor nuclei innervating thoracic epaxial muscles 543
Organization of neck muscles and their motor nuclei 544
Lateral vs. medial long descending motor tract systems 545
The lateral descending motor tract group 545
The medial descending motor tract group 546
Morphologies of single neurons in the medial long descending motor tract system 548
The vestibulospinal tract 548
Distribution of MVST neurons in the vestibular nuclei 549
Distribution of LVST neurons in the vestibular nuclei 550
Projection areas of primary vestibular afferents in the vestibular nuclei 551
Morphology of single vestibulospinal tract axons 553
Morphology of single lateral vestibulospinal tract axons 553
Morphology of single medial vestibulospinal tract axons 554
Morphology of single commissural interneurons mediating vestibular input to neck motoneurons 556
Functional connections of vestibular neurons with ocular motoneurons and spinal neurons 560
Morphology of single reticulospinal axons 561
The tectospinal tract 561
Morphology of single tectospinal axons 561
Morphology of single spinal interneurons receiving monosynaptic excitation from the superior colliculus 563
Functional connections of medial long descending motor tracts with neck motoneurons 566
Functional roles of multiple axon collaterals of single long descending motor tract axons 567
Acknowledgments 570
References 570
Subject Index 576
| Erscheint lt. Verlag | 9.11.2005 |
|---|---|
| Sprache | englisch |
| Themenwelt | Sachbuch/Ratgeber |
| Geisteswissenschaften ► Psychologie ► Biopsychologie / Neurowissenschaften | |
| Medizin / Pharmazie ► Medizinische Fachgebiete ► Neurologie | |
| Studium ► 1. Studienabschnitt (Vorklinik) ► Physiologie | |
| Naturwissenschaften ► Biologie ► Genetik / Molekularbiologie | |
| Naturwissenschaften ► Biologie ► Humanbiologie | |
| Naturwissenschaften ► Biologie ► Zoologie | |
| ISBN-10 | 0-08-046125-5 / 0080461255 |
| ISBN-13 | 978-0-08-046125-0 / 9780080461250 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich