Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Hands-On AI Trading with Python, QuantConnect, and AWS (eBook)

eBook Download: PDF
2025
410 Seiten
Wiley (Verlag)
978-1-394-26767-5 (ISBN)

Lese- und Medienproben

Hands-On AI Trading with Python, QuantConnect, and AWS - Jiri Pik, Ernest P. Chan, Jared Broad, Philip Sun, Vivek Singh
Systemvoraussetzungen
35,99 inkl. MwSt
(CHF 35,15)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Master the art of AI-driven algorithmic trading strategies through hands-on examples, in-depth insights, and step-by-step guidance

Hands-On AI Trading with Python, QuantConnect, and AWS explores real-world applications of AI technologies in algorithmic trading. It provides practical examples with complete code, allowing readers to understand and expand their AI toolbelt.

Unlike other books, this one focuses on designing actual trading strategies rather than setting up backtesting infrastructure. It utilizes QuantConnect, providing access to key market data from Algoseek and others. Examples are available on the book's GitHub repository, written in Python, and include performance tearsheets or research Jupyter notebooks.

The book starts with an overview of financial trading and QuantConnect's platform, organized by AI technology used:

  • Examples include constructing portfolios with regression models, predicting dividend yields, and safeguarding against market volatility using machine learning packages like SKLearn and MLFinLab.
  • Use principal component analysis to reduce model features, identify pairs for trading, and run statistical arbitrage with packages like LightGBM.
  • Predict market volatility regimes and allocate funds accordingly.
  • Predict daily returns of tech stocks using classifiers.
  • Forecast Forex pairs' future prices using Support Vector Machines and wavelets.
  • Predict trading day momentum or reversion risk using TensorFlow and temporal CNNs.
  • Apply large language models (LLMs) for stock research analysis, including prompt engineering and building RAG applications.
  • Perform sentiment analysis on real-time news feeds and train time-series forecasting models for portfolio optimization.
  • Better Hedging by Reinforcement Learning and AI: Implement reinforcement learning models for hedging options and derivatives with PyTorch.
  • AI for Risk Management and Optimization: Use corrective AI and conditional portfolio optimization techniques for risk management and capital allocation.

Written by domain experts, including Jiri Pik, Ernest Chan, Philip Sun, Vivek Singh, and Jared Broad, this book is essential for hedge fund professionals, traders, asset managers, and finance students. Integrate AI into your next algorithmic trading strategy with Hands-On AI Trading with Python, QuantConnect, and AWS.



JIRI PIK: Founder and CEO of RocketEdge.com. A software architect and cloud computing expert, Jiri Pik specializes in designing high-performance trading systems. He has decades of experience in financial technologies and has worked with some of the world's leading financial institutions, including Goldman Sachs and JPMorgan Chase.

ERNEST P. CHAN: A pioneer in applying machine learning to quantitative trading, Ernest P. Chan founded Predictnow.ai and QTS Capital Management. He is author of books such as Quantitative Trading and Machine Trading.

JARED BROAD: Founder and CEO of QuantConnect?, Jared Broad has empowered over 300,000 algorithmic traders worldwide with a platform that simplifies strategy design, backtesting, and live deployment.

PHILIP SUN: CEO and Co-founder of Adaptive Investment Solutions, LLC, and a seasoned quantitative fund manager, Philip Sun and his team focus on building state-of-the-art AI-driven risk management platform for wealth advisors and institutional investors.

VIVEK SINGH: A product leader at Amazon Web Services (AWS), Vivek Singh spearheads the development of large language models (LLMs) and Generative AI applications, bringing cutting-edge AI technologies to the trading domain.


Master the art of AI-driven algorithmic trading strategies through hands-on examples, in-depth insights, and step-by-step guidance Hands-On AI Trading with Python, QuantConnect, and AWS explores real-world applications of AI technologies in algorithmic trading. It provides practical examples with complete code, allowing readers to understand and expand their AI toolbelt. Unlike other books, this one focuses on designing actual trading strategies rather than setting up backtesting infrastructure. It utilizes QuantConnect, providing access to key market data from Algoseek and others. Examples are available on the book's GitHub repository, written in Python, and include performance tearsheets or research Jupyter notebooks. The book starts with an overview of financial trading and QuantConnect's platform, organized by AI technology used: Examples include constructing portfolios with regression models, predicting dividend yields, and safeguarding against market volatility using machine learning packages like SKLearn and MLFinLab. Use principal component analysis to reduce model features, identify pairs for trading, and run statistical arbitrage with packages like LightGBM. Predict market volatility regimes and allocate funds accordingly. Predict daily returns of tech stocks using classifiers. Forecast Forex pairs' future prices using Support Vector Machines and wavelets. Predict trading day momentum or reversion risk using TensorFlow and temporal CNNs. Apply large language models (LLMs) for stock research analysis, including prompt engineering and building RAG applications. Perform sentiment analysis on real-time news feeds and train time-series forecasting models for portfolio optimization. Better Hedging by Reinforcement Learning and AI: Implement reinforcement learning models for hedging options and derivatives with PyTorch. AI for Risk Management and Optimization: Use corrective AI and conditional portfolio optimization techniques for risk management and capital allocation. Written by domain experts, including Jiri Pik, Ernest Chan, Philip Sun, Vivek Singh, and Jared Broad, this book is essential for hedge fund professionals, traders, asset managers, and finance students. Integrate AI into your next algorithmic trading strategy with Hands-On AI Trading with Python, QuantConnect, and AWS.
Erscheint lt. Verlag 22.1.2025
Sprache englisch
Themenwelt Recht / Steuern Wirtschaftsrecht
Wirtschaft Betriebswirtschaft / Management
Schlagworte ai trading book • ai trading guide • Algorithmic trading guide • artificial intelligence trading • artificial intelligence trading book • artificial intelligence trading guide • hedging ai • large language model for trading • llm trading • risk management ai
ISBN-10 1-394-26767-3 / 1394267673
ISBN-13 978-1-394-26767-5 / 9781394267675
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die IFRS in strukturierten Übersichten. Mit u.a. den grundlegenden …

von KPMG AG Wirtschaftsprüfungsgesellschaft

eBook Download (2025)
Schäffer-Poeschel (Verlag)
CHF 48,80
Gefunden werden und Geschäft ausbauen durch ganzheitliche Entwicklung

von Anette Schunder-Hartung

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 9,75