Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Introduction to Partial Differential Equations (eBook)

(Autor)

eBook Download: PDF
2013 | 2014
XXV, 635 Seiten
Springer International Publishing (Verlag)
978-3-319-02099-0 (ISBN)

Lese- und Medienproben

Introduction to Partial Differential Equations - Peter Olver
Systemvoraussetzungen
51,16 inkl. MwSt
(CHF 49,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This textbook is designed for a one year course covering the fundamentals of partial differential equations, aimed towards advanced undergraduates and beginning graduate students. It features examples and exercises connected to real world problems.
This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solitons, Huygens'. Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.Peter J. Olver is professor of mathematics at the University of Minnesota. His wide-ranging research interests are centered on the development of symmetry-based methods for differential equations and their manifold applications. He is the author of over 130 papers published in major scientific research journals as well as 4 other books, including the definitive Springer graduate text, Applications of Lie Groups to Differential Equations, and another undergraduate text, Applied Linear Algebra.A Solutions Manual for instrucors is available by clicking on "Selected Solutions Manual" under the Additional Information section on the right-hand side of this page.  

Peter J. Olver is a Professor at University of Minnesota.

What are Partial Differential Equations?.- Linear and Nonlinear Waves.- Fourier Series.- Separation of Variables.- Finite Differences.- Generalized Functions and Green’s Functions.- Complex Analysis and Conformal Mapping.- Fourier Transforms.- Linear and Nonlinear Evolution Equations.- A General Framework for Linear Partial Differential Equations.- Finite Elements and Weak Solutions.- Dynamics of Planar Media.- Partial Differential Equations in Space.     

Erscheint lt. Verlag 8.11.2013
Reihe/Serie Undergraduate Texts in Mathematics
Verlagsort Cham
Sprache englisch
Schlagworte Complex Analysis • Dynamics of Planar Media • Eigenvalues and Eigenvectors • Finite Elements and Weak Solutions • Fourier Transforms • Linear and Nonlinear Evolution Equations
ISBN-10 3-319-02099-4 / 3319020994
ISBN-13 978-3-319-02099-0 / 9783319020990
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.