Computational Intelligence for a Greener Future: Innovations in Renewable Energy Systems
Springer International Publishing (Verlag)
978-3-032-06731-9 (ISBN)
- Noch nicht erschienen - erscheint am 14.01.2026
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
This book aims to explore the intersection of computational intelligence techniques and renewable energy technologies, serving as a valuable resource for researchers, engineers, and policymakers. By compiling cutting-edge research and innovative applications, it seeks to demonstrate how CI can contribute to a more sustainable future, highlighting both theoretical advancements, practical implementations, and future directions.
Nowadays, as the world faces the pressing challenges of climate change and the depletion of fossil fuel resources, the shift toward decarbonization and renewable energy systems has become a vital priority. Innovations in computational intelligence (CI) offer promising opportunities to optimize and manage energy production, distribution, and consumption. By leveraging techniques like nature-inspired optimization algorithms, fuzzy methods, machine learning, and clustering, researchers and practitioners can enhance the efficiency and management of renewable energy systems.
A Review of the Genetic Algorithm Approach in Predictive Maintenance and Energy Forecasting.- Deep Reinforcement Learning in Energy Management System for Fuel Cell Hybrid Vehicles: A Review on Reward Design and Testing Framework.- Forecasting Renewable Energy and Electricity Consumption using Evolutionary Computation.- Enhancing EV Battery Safety: SOH Estimation with Machine Learning.- Short-Term Renewable Energy Forecasting Methods Using Artificial Neural Networks: A Comprehensive Review.- etc...
| Erscheinungsdatum | 29.11.2025 |
|---|---|
| Reihe/Serie | Studies in Computational Intelligence |
| Zusatzinfo | VII, 533 p. 131 illus., 111 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Naturwissenschaften ► Biologie ► Ökologie / Naturschutz | |
| Technik | |
| Schlagworte | Artificial Intelligence • Clustering • Computational Intelligence • Data Mining • Energy Consumption • Energy Management • energy production • evolutionary computation • Fuzzy Systems • machine learning • Metaheuristics • Nature-Inspired Optimization Algorithms • Renewable energy systems |
| ISBN-10 | 3-032-06731-6 / 3032067316 |
| ISBN-13 | 978-3-032-06731-9 / 9783032067319 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich