Mathematical Physics and Its Interactions
Springer Verlag, Singapore
978-981-97-0366-1 (ISBN)
- Titel nicht im Sortiment
- Artikel merken
This publication comprises research papers contributed by the speakers, primarily based on their planned talks at the meeting titled 'Mathematical Physics and Its Interactions,' initially scheduled for the summer of 2021 in Tokyo, Japan. It celebrates Tohru Ozawa's 60th birthday and his extensive contributions in many fields.
The works gathered in this volume explore interactions between mathematical physics, various types of partial differential equations (PDEs), harmonic analysis, and applied mathematics. They are authored by research leaders in these fields, and this selection honors the spirit of the workshop by showcasing cutting-edge results and providing a forward-looking perspective through discussions of problems, with the goal of shaping future research directions.
Originally planned as an in-person gathering, this conference had to change its format due to limitations imposed by COVID, more precisely to avoid inducing people into unnecessary vaccinations.Shuji Machihara is a currently Professor at Saitama University. He previously held positions at Shimane University.
F. Hiroshima, Representations of Pauli-Fierz type models.- J.-C. Saut and Li Xu, B. Schrodinger and Euler-Korteweg.- S. Masaki, J.-I. Segata, and K. Uriya, Asymptotic Behavior in Time of Solution to System of Cubic Nonlinear Schrodinger Equations in One Space Dimension.- K. Hirata, Positive Solutions Of Superlinear Elliptic Equations with Respect to The Schrödinger Operator.- H. Kozono and S. Shimizu, On a Compatibility Condition for the Navier-Stokes Solutions in Maximal Lp-Regularity Class.- K. Tsutaya and Y. Wakasugi, Remarks on blow up of solutions of nonlinear wave equations in Friedmann-Lema itre-Robertson-Walker spacetime.- L. Cossetti, L. Fanelli and N. M. Schiavone, Recent developments in spectral theory for non-self-adjoint Hamiltonians.- S. Kumar Cunef, F. Ponce-Vanegas, L. Roncal, L. Vega, The Frisch-Parisi Formalism for Fluctuations of The Schrödinger Equation.- S. Koike and T. Kosugi, Rate of convergence for approximate solutions in obstacle problems for nonlinear operators.- T. Ishiwata and S. Yazaki, Convexity phenomena arising in an area-preserving crystalline curvature flow.
| Erscheinungsdatum | 10.08.2025 |
|---|---|
| Reihe/Serie | Springer Proceedings in Mathematics & Statistics |
| Zusatzinfo | 5 Illustrations, color; 28 Illustrations, black and white |
| Verlagsort | Singapore |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Naturwissenschaften ► Physik / Astronomie | |
| Schlagworte | Applied mathematics • Functional Analysis • Harmonic Analysis • Mathematical Physics • Partial differential equations |
| ISBN-10 | 981-97-0366-2 / 9819703662 |
| ISBN-13 | 978-981-97-0366-1 / 9789819703661 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich