Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Geometric Methods in Physical Systems: From Differentiable Structures to Applications -

Geometric Methods in Physical Systems: From Differentiable Structures to Applications

The Wisła 22 Winter School and Workshop

Maria Ulan, Noémie C. Combe (Herausgeber)

Buch | Hardcover
XII, 138 Seiten
2026
Springer International Publishing (Verlag)
978-3-032-00398-0 (ISBN)
CHF 194,70 inkl. MwSt
  • Noch nicht erschienen - erscheint am 03.02.2026
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book presents selected lectures from the Wisla 22 Winter School and Workshop organized by the Baltic Institute of Mathematics that illustrate the power of geometric methods in understanding complex physical systems.  Chapters progress from foundational mathematical structures to concrete applications in fluid dynamics and mechanical systems, highlighting the profound connection between differential geometry and physical phenomena.

The first chapter investigates differentiable structures on a non-Hausdorff line with two origins, setting the stage for the applications that follow.  The next chapter transitions to fluid mechanics through a study of generalized geometry in two-dimensional incompressible fluid flows, establishing the mathematical framework needed for analyzing fluid systems through geometric lenses.  Building on these foundations, the third chapter expands the perspective with a comprehensive treatment of nonlinear differential equations in fluid mechanics, utilizing concepts from contact and symplectic geometry to illuminate singular properties of fluid dynamics solutions.  Finally, the fourth chapter demonstrates how geometric methods extend beyond fluid mechanics to mechanical systems with nonholonomic constraints, revealing how geometric formulations can address challenging phenomena like discontinuities, collisions, and the counterintuitive stabilization of inverted pendulums.

Geometric Methods in Physical Systems is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry and mathematical analysis is assumed.

Classification of differentiable structures on the non-Hausdorff line with two origins.- Generalized Geometry of 2D Incompressible Fluid Flows.- Nonlinear differential equations of fluid mechanics: symmetries, integrability, singularities.

Erscheinungsdatum
Reihe/Serie Tutorials, Schools, and Workshops in the Mathematical Sciences
Zusatzinfo XII, 138 p. 32 illus., 15 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie
Schlagworte 2D Incompressible Fluid Flows • Monge-Ampère equation • Non-Hausdorff line • nonholonomic constraints • Topological Field Theory
ISBN-10 3-032-00398-9 / 3032003989
ISBN-13 978-3-032-00398-0 / 9783032003980
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95