Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Taylorentwicklung, Jacobi-Matrix, ∇, δ(x) und Co. - Andreas Engel

Taylorentwicklung, Jacobi-Matrix, ∇, δ(x) und Co.

Rechenmethoden für Studierende der Physik

(Autor)

Buch | Softcover
IX, 405 Seiten
2025 | 2., aktualisierte Auflage
Springer Berlin (Verlag)
978-3-662-70853-8 (ISBN)
CHF 62,95 inkl. MwSt

Mathematik ist die Sprache der Physik; ein fundiertes Verständnis physikalischer Phänomene erfordert solide mathematische Kenntnisse. Dieses Lehrbuch bietet eine Einführung in alle wichtigen mathematischen Methoden, die Studierende der Physik in den ersten Semestern benötigen. Der Fokus liegt dabei auf der effizienten Anwendung dieser Methoden bei der Lösung konkreter physikalischer Probleme. Mit zahlreichen Übungsaufgaben am Ende der Kapitel können Leserinnen und Leser ihre Fähigkeiten überprüfen.

Zielgruppe sind in erster Linie Studierende der Physik in den ersten Semestern an deutschsprachigen Universitäten und Hochschulen. Das Buch baut auf einem Kenntnisstand in Mathematik auf, wie er mit dem Abitur erreicht wird.

In der zweiten Auflage wurde das Buch durch ein Kapitel zur Funktionentheorie ergänzt und die Behandlung der Fourier-Transformation erweitert.

Aus dem Inhalt

  • Differentiation und Integration
  • Differentielle Modellbildung
  • Lineare Räume und lineare Abbildungen
  • Mehrdimensionale Differentiation und Integration, krummlinige Koordinatensysteme
  • Funktionentheorie und Fourier-Transformation
  • Gewöhnliche Differentialgleichungen, Newton sche Mechanik
  • Partielle Differentialgleichungen, Green sche Funktionen

Andreas Engel ist Professor für theoretische Physik an der Universität Oldenburg. Das Buch basiert auf seiner Vorlesung "Einführung in die theoretische Physik", die er wiederholt gehalten und ständig weiterentwickelt hat. Sein Arbeitsgebiet liegt in der statistischen Physik.

Vorwort.- I Unendlich kleine Größen.- 1 Differentiation.- 2 Integration.- 3 Differentielle Modellbildung.- II Linerare Räume.- 4 Dreidimensionale Vektoren.- 5 Allgemeine Vektorräume.- 6 Lineare Abbildungen.- III Mehrdimensionale Differentiation und Integration.- 7 Mehrdimensionale Differentiation.- 8 Mehrdimensionale Integration.- 9 Krummlinige Koordinatensysteme.- IV Funktionentheorie.- 10 Funktionentheorie.- 11 Die Fourier-Transformation.- V Gewöhnliche Differentialgleichungen.- 12 Gewöhnliche Differentialgleichungen.- 13 Newton´sche Mechanik.- 14 Extrema.- VI Partielle Differentialgleichungen.- 15 Wichtige Beispiele.- 16 Separationsansätze.- 17 Die Green´sche Funktion.- Literaturverzeichnis.- Index.

Erscheinungsdatum
Zusatzinfo Illustrationen
Verlagsort Berlin
Sprache deutsch
Maße 168 x 240 mm
Themenwelt Naturwissenschaften Physik / Astronomie Mechanik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte Differentialgleichung • Differentiation • Integration • Linearer Raum • Rechenmethoden für Physik • Übungsaufgaben mit Lösungen • WolframAlpha
ISBN-10 3-662-70853-1 / 3662708531
ISBN-13 978-3-662-70853-8 / 9783662708538
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Statik

von Dietmar Gross; Werner Hauger; Jörg Schröder …

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Kinetik

von Dietmar Gross; Werner Hauger; Jörg Schröder …

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15