Emergent and artificial conductive mesoscale patterns in a polar Mott insulator
Seiten
2024
Cuvillier Verlag
978-3-68952-000-7 (ISBN)
Cuvillier Verlag
978-3-68952-000-7 (ISBN)
- Keine Verlagsinformationen verfügbar
- Artikel merken
The global demand for increased computational power is fuelled by the miniaturisation of electronic components. Next to this more Moore approach, more than Moore and beyond CMOS expand on existing technologies and on devices with fundamentally different principles of operation. Mott based devices are introduced under the scope of beyond CMOS, with a potentially reduced energy consumption during operation in comparison to semiconductor-based devices. In such devices quantum properties are utilised to control the current flow. Mott insulators are especially intriguing as they fulfil all conditions to be metallic but show properties of insulating materials. Up to now the properties in Mott-insulators have typically been controlled at the macroscopic length scale, which leaves room for miniaturisation. It is apparent that such a versatile material class has untapped potential with regards to utilisation of its quantum properties.
This work investigates a novel class of materials, beyond CMOS, the lacunar spinels, where the electrons are localised on molecular clusters instead of atomic sites. The target system of this thesis, GaV4S8, is such a lacunar spinel and shows a structural transition, which gives rise to ferroelectric domain walls that could be used as nanoscale functional objects. Here, potential 2D conducting pathways are investigated to push Mott science to the nanoscale. These pseudo 2D properties are characterised using a range of surface sensitive techniques to understand their origin, a critical first step for functionalisation. Transferring the knowledge gained on these structures allowed for an in-situ control of the current flow at the nanoscale, pushing the boundaries of research in this quantum material.
This work investigates a novel class of materials, beyond CMOS, the lacunar spinels, where the electrons are localised on molecular clusters instead of atomic sites. The target system of this thesis, GaV4S8, is such a lacunar spinel and shows a structural transition, which gives rise to ferroelectric domain walls that could be used as nanoscale functional objects. Here, potential 2D conducting pathways are investigated to push Mott science to the nanoscale. These pseudo 2D properties are characterised using a range of surface sensitive techniques to understand their origin, a critical first step for functionalisation. Transferring the knowledge gained on these structures allowed for an in-situ control of the current flow at the nanoscale, pushing the boundaries of research in this quantum material.
| Erscheinungsdatum | 18.07.2024 |
|---|---|
| Verlagsort | Göttingen |
| Sprache | englisch |
| Maße | 210 x 297 mm |
| Themenwelt | Naturwissenschaften ► Physik / Astronomie |
| Schlagworte | Belastungsimplantation, Risse, Kratzer, Gräben, In-situ-Kontrolle • conducting atomic force microscopy, scanning electron microscopy • electronic conductivity, space-charge limited conduction model • Ferroelektrika, ferroelektrische Domänenwände • ferroics, multiferroics, ferroelectrics, ferroelectric domain walls • focused ion beam, point I(V) spectroscopy, bulk resistance • functional domain walls, conductive domain walls • funktionale Domänenwände, leitfähige Domänenwände • GaV4S8, strain implantation, cracks, scratches, trenches • in-situ control, nanoscopic, Aizu’s model • Ionenfeinstrahlanlage, Punkt-Strom-Spannungs-Spektroskopie • Jahn-Teller effect, structural phase transition • lacunar spinel, spinel • lamella • Modell der begrenzten Raumladungsleitung • Mott-Isolator, Motttronik, Ferroika, Multiferroika • nanoskopisch, Aizu-Modell, elektronische Leitfähigkeit • Oberflächenrekonstruktion, spontane Belastung, Metall-Isolator Übergang • Piezomode-Kraftmikroskopie, Strom-Spannungsmikroskopie, Rasterelektronenmikroskopie • Piezoresponse Force Microscopy • polarisation, atomic force microscopy • Polarisation, Rasterkraftmikroskopie, Rastersondenmikroskopie • quantum materials, beyond CMOS, Mott-insulator, Motttronics • Röntgenbeugungsmikroskopie • Scanning Probe Microscopy • scanning X-ray diffraction microscopy, Quantenmaterialien, Beyond-CMOS • structural domain walls, mesoscale pattern • strukturelle Domänenwände, Mesoskalige Strukturen, Jahn-Teller Effekt, struktureller Phasenübergang • surface reconstruction, spontaneous strain, metal-to-insulator transition • Volumenwiderstand, lakunarer Spinell |
| ISBN-10 | 3-68952-000-2 / 3689520002 |
| ISBN-13 | 978-3-68952-000-7 / 9783689520007 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Problem Solving with Python
Buch | Softcover (2024)
Wiley-VCH (Verlag)
CHF 149,95