A physically sound approach for the selection of optimized ATPS for purification of high-value biomolecules
Seiten
2021
Dr. Hut (Verlag)
9783843949187 (ISBN)
Dr. Hut (Verlag)
9783843949187 (ISBN)
- Keine Verlagsinformationen verfügbar
- Artikel merken
The industrial production of high-value biomolecules such as biopharmaceuticals or industrial enzymes has grown significantly within the last decades. A promising alternative to cost-intensive state-of-the-art chromatographic purification of these biomolecules is the aqueous two-phase extraction (ATPE) using an aqueous two-phase system (ATPS). Nevertheless, ATPE is not yet applied industrially, as state-of-the-art ATPS selection is based on trial-and-error screenings, leading to unoptimized ATPSs. As a result, product loss through aggregation/precipitation of the high-value biomolecule occurs.
Within this work, a physically sound approach, combining thermodynamic modeling and a small set of experiments, was developed. This approach allows for an identification of a tailor-made ATPS for the ATPE of a given high-value biomolecule with significantly lower effort than the state-of-the-art. It has been successfully demonstrated that the application of this approach enables a rapid and reliable selection of a tailor-made ATPS that provides high yield and low aggregation/precipitation of the biomolecule. To improve stability and solubility of the high-value biomolecule in the ATPS, excipients such as amino acids were considered and selected. The use of a suitable excipient further increased yield and minimized aggregation/precipitation of the biomolecule. To further optimize the approach and accelerate ATPS selection, ePC-SAFT was successfully applied to predict interactions and partitioning behavior of the high-value biomolecule in different ATPSs.
Prospectively, the results of this work will support the establishment of ATPE as purification technology for high-value biomolecules in industrial downstream processing.
Within this work, a physically sound approach, combining thermodynamic modeling and a small set of experiments, was developed. This approach allows for an identification of a tailor-made ATPS for the ATPE of a given high-value biomolecule with significantly lower effort than the state-of-the-art. It has been successfully demonstrated that the application of this approach enables a rapid and reliable selection of a tailor-made ATPS that provides high yield and low aggregation/precipitation of the biomolecule. To improve stability and solubility of the high-value biomolecule in the ATPS, excipients such as amino acids were considered and selected. The use of a suitable excipient further increased yield and minimized aggregation/precipitation of the biomolecule. To further optimize the approach and accelerate ATPS selection, ePC-SAFT was successfully applied to predict interactions and partitioning behavior of the high-value biomolecule in different ATPSs.
Prospectively, the results of this work will support the establishment of ATPE as purification technology for high-value biomolecules in industrial downstream processing.
| Erscheinungsdatum | 09.12.2021 |
|---|---|
| Reihe/Serie | Thermodynamik |
| Verlagsort | München |
| Sprache | englisch |
| Maße | 148 x 210 mm |
| Gewicht | 298 g |
| Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Thermodynamik |
| Technik | |
| Schlagworte | Hochwertige Biomoleküle • Thermodynamik • Wässrige Zweiphasensysteme |
| ISBN-13 | 9783843949187 / 9783843949187 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
zur Materialproblematik der modernen Elektronik
Buch | Hardcover (2025)
Alfred Kröner Verlag
CHF 27,85
Von Energie und Entropie zu Wärmeübertragung und Phasenübergängen
Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
CHF 83,90