Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Thin Films of Transition Metal Chalcogenides: Novel Molecular Pathways and Catalytic Applications - Lasse Jürgensen

Thin Films of Transition Metal Chalcogenides: Novel Molecular Pathways and Catalytic Applications

Buch | Softcover
302 Seiten
2021
Dr. Hut (Verlag)
9783843947220 (ISBN)
CHF 117,60 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
Green hydrogen produced from fossil-free resources is considered a key game changer in the search for solutions enabling the energy transition. In this context the development of hydrogen production technologies like electrolysis is strongly driven by the two main criteria: sustainability and economy of scale. Over the past decades, various technological achievements have resulted in a reduction of costs, which has significantly improved the economic potential of hydrogen produced by water electrolysis. Especially in the field of material development, great effort was devoted to modify nanostructures of state-of-the-art precious metal-based catalyst materials and to replace them with abundant cost-effective catalysts accelerating sluggish water splitting reactions.

This thesis describes the molecule-to-advanced material value chain with a special focus on chemically tailored molecular precursors. Within these studies, synthetic approaches starting from new bidentate ligand systems based on nitrogen-oxygen (—N—O—) and nitrogen-sulfur (—N—S—) donor systems were investigated in terms of their chelating properties and decomposition patterns. Chemical vapor deposition utilizing tailored precursor molecules enabled the targeted nanostructuring of catalytic thin films for water splitting applications.

The results described in this thesis enrich the possibilities for the replacement of precious metals as state-of-the-art OER materials. In addition, the synthetic chemical concepts that have been developed with respect to controlled materials synthesis, clearly demonstrated the influence of the molecular structure on the phase composition and chemical purity of the final catalytic material. Finally, water splitting by solar irradiation was achieved without external bias through incorporation of Ir-based electrodes in tandem PV-EC devices.
Erscheinungsdatum
Reihe/Serie Anorganische Chemie
Verlagsort München
Sprache englisch
Maße 148 x 210 mm
Gewicht 498 g
Themenwelt Naturwissenschaften Chemie Anorganische Chemie
Schlagworte Chemical vapor deposition • Metal Chalcogenides • nanomaterials
ISBN-13 9783843947220 / 9783843947220
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Erwin Riedel; Christoph Janiak

Buch | Hardcover (2022)
De Gruyter (Verlag)
CHF 129,95