Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Geochemistry (eBook)

eBook Download: PDF
2020 | 2. Auflage
John Wiley & Sons (Verlag)
978-1-119-43810-6 (ISBN)

Lese- und Medienproben

Geochemistry - William M. White
Systemvoraussetzungen
73,99 inkl. MwSt
(CHF 72,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

A Comprehensive Introduction to the 'Geochemist Toolbox' - the Basic Principles of Modern Geochemistry

In the new edition of William M. White's Geochemistry, undergraduate and graduate students will find each of the core principles of geochemistry covered. From defining key principles and methods to examining Earth's core composition and exploring organic chemistry and fossil fuels, this definitive edition encompasses all the information needed for a solid foundation in the earth sciences for beginners and beyond. 

For researchers and applied scientists, this book will act as a useful reference on fundamental theories of geochemistry, applications, and environmental sciences. The new edition includes new chapters on the geochemistry of the Earth's surface (the 'critical zone'), marine geochemistry, and applied geochemistry as it relates to environmental applications and geochemical exploration.

?      A review of the fundamentals of geochemical thermodynamics and kinetics, trace element and organic geochemistry

?      An introduction to radiogenic and stable isotope geochemistry and applications such as geologic time, ancient climates, and diets of prehistoric people

?      Formation of the Earth and composition and origins of the core, the mantle, and the crust

?      New chapters that cover soils and streams, the oceans, and geochemistry applied to the environment and mineral exploration

In this foundational look at geochemistry, new learners and professionals will find the answer to the essential principles and techniques of the science behind the Earth and its environs.



WILLIAM M. WHITE received his B.Sc. in Geology from the University of California, Berkeley, and a Ph.D. in Oceanography from the University of Rhode Island. He is a professor of earth and atmospheric sciences at Cornell University where he teaches geochemistry. He has been elected a fellow at the Geochemical Society/European Association of Geochemistry and the AGU and named as an ISI highly cited researcher.


A Comprehensive Introduction to the Geochemist Toolbox the Basic Principles of Modern Geochemistry In the new edition of William M. White s Geochemistry, undergraduate and graduate students will find each of the core principles of geochemistry covered. From defining key principles and methods to examining Earth s core composition and exploring organic chemistry and fossil fuels, this definitive edition encompasses all the information needed for a solid foundation in the earth sciences for beginners and beyond. For researchers and applied scientists, this book will act as a useful reference on fundamental theories of geochemistry, applications, and environmental sciences. The new edition includes new chapters on the geochemistry of the Earth s surface (the critical zone ), marine geochemistry, and applied geochemistry as it relates to environmental applications and geochemical exploration. A review of the fundamentals of geochemical thermodynamics and kinetics, trace element and organic geochemistry An introduction to radiogenic and stable isotope geochemistry and applications such as geologic time, ancient climates, and diets of prehistoric people Formation of the Earth and composition and origins of the core, the mantle, and the crust New chapters that cover soils and streams, the oceans, and geochemistry applied to the environment and mineral exploration In this foundational look at geochemistry, new learners and professionals will find the answer to the essential principles and techniques of the science behind the Earth and its environs.

WILLIAM M. WHITE received his B.Sc. in Geology from the University of California, Berkeley, and a Ph.D. in Oceanography from the University of Rhode Island. He is a professor of earth and atmospheric sciences at Cornell University where he teaches geochemistry. He has been elected a fellow at the Geochemical Society/European Association of Geochemistry and the AGU and named as an ISI highly cited researcher.

Cover 1
Title Page 5
Copyright 6
Contents 7
Preface 17
About the companion website 19
Chapter 1 Introduction 21
1.1 Introduction 21
1.2 Beginnings 21
1.3 Geochemistry in the twenty?first century 23
1.4 The philosophy of science 24
1.4.1 Building scientific understanding 24
1.4.2 The scientist as skeptic 25
1.5 Elements, atoms, crystals, and chemical bonds: some chemical fundamentals 26
1.5.1 The periodic table 26
1.5.2 Electrons and orbits 27
1.5.3 Some chemical properties of the elements 29
1.5.4 Chemical bonding 32
1.5.4.1 Covalent, ionic, and metal bonds 32
1.5.4.2 Van der Waals interactions and hydrogen bonds 33
1.5.5 Molecules, crystals, and minerals 34
1.5.5.1 Molecules 34
1.5.5.2 Crystals 36
1.6 A brief look at the earth 39
1.6.1 Structure of the Earth 39
1.6.2 Plate tectonics and the hydrologic cycle 40
1.7 A look ahead 42
References and suggestions for further reading 50
Chapter 2 Energy, entropy, and fundamental thermodynamic concepts 51
2.1 The Thermodynamic Perspective 51
2.2 Thermodynamic Systems and Equilibrium 52
2.2.1 Fundamental thermodynamic variables 54
2.2.2 Properties of state 54
2.3 Equations of State 55
2.3.1 Ideal gas law 55
2.3.2 Equations of state for real gases 56
2.3.2.1 Van der Waals equation 56
2.3.2.2 Other equations of state for gases 56
2.3.3 Equation of state for other substances 57
2.4 Temperature, Absolute Zero, and the Zeroth Law of Thermodynamics 57
2.5 Energy and the First Law of Thermodynamics 58
2.5.1 Energy 58
2.5.2 Work 59
2.5.3 Path independence, exact differentials, state functions, and the first law 60
2.6 The Second Law and Entropy 61
2.6.1 Statement 61
2.6.2 Statistical mechanics: a microscopic perspective of entropy 62
2.6.2.1 Microscopic interpretation of temperature 67
2.6.2.2 Entropy and volume 67
2.6.2.3 Summary 68
2.6.3 Integrating factors and exact differentials 68
2.7 Enthalpy 70
2.8 Heat Capacity 71
2.8.1 Constant volume heat capacity 72
2.8.2 Constant pressure heat capacity 72
2.8.3 Energy associated with volume and the relationship between Cv and Cp 72
2.8.4 Heat capacity of solids: a problem in quantum physics 73
2.8.4.1 The Boltzmann distribution law 74
2.8.4.2 The partition function 75
2.8.4.3 Energy distribution in solids 76
2.8.5 Relationship of entropy to other state variables 78
2.8.6 Additive nature of silicate heat capacities 78
2.9 The Third Law and Absolute Entropy 79
2.9.1 Statement of the third law 79
2.9.2 Absolute entropy 79
2.10 Calculating Enthalpy and Entropy Changes 80
2.10.1 Enthalpy changes due to changes in temperature and pressure 80
2.10.2 Changes in enthalpy due to reactions and change of state 81
2.10.3 Entropies of reaction 82
2.11 Free Energy 85
2.11.1 Helmholtz free energy 85
2.11.2 Gibbs free energy 85
2.11.2.1 Derivation 85
2.11.2.2 Gibbs free energy change in reactions 85
2.11.3 Criteria for equilibrium and spontaneity 85
2.11.4 Temperature and pressure dependence of the Gibbs free energy 86
2.12 The Maxwell Relations* 89
2.13 Summary 90
References and Suggestions for Further Reading 91
Problems 91
Chapter 3 Solutions and thermodynamics of multicomponent systems 94
3.1 Introduction 94
3.2 Phase equilibria 95
3.2.1 Some definitions 95
3.2.1.1 Phase 95
3.2.1.2 Species 95
3.2.1.3 Component 95
3.2.1.4 Degrees of freedom 97
3.2.2 The Gibbs phase rule 97
3.2.3 The Clapeyron equation 98
3.3 Solutions 100
3.3.1 Raoult's law 100
3.3.2 Henry's law 101
3.4 Chemical potential 101
3.4.1 Partial molar quantities 101
3.4.2 Definition of chemical potential and relationship to Gibbs free energy 102
3.4.3 Properties of the chemical potential 102
3.4.4 The Gibbs–Duhem relation 103
3.4.5 Derivation of the phase rule 104
3.5 Ideal solutions 104
3.5.1 Chemical potential in ideal solutions 104
3.5.2 Volume, enthalpy, entropy, and free energy changes in ideal solutions 104
3.6 Real solutions 106
3.6.1 Chemical potential in real solutions 106
3.6.2 Fugacities 107
3.6.3 Activities and activity coefficients 108
3.6.4 Excess functions 110
3.7 Electrolyte solutions 113
3.7.1 The nature of water and water–electrolyte interaction 113
3.7.2 Some definitions and conventions 114
3.7.2.1 Concentration units 114
3.7.2.2 pH 115
3.7.2.3 Standard state and other conventions 115
3.7.3 Activities in electrolytes 116
3.7.3.1 The Debye–Hückel and Davies equations 117
3.7.3.2 Limitations to the Debye–Hückel approach 118
3.8 Ideal solutions in crystalline solids and their activities 121
3.8.1 Mixing?on?site model 121
3.8.2 Local charge balance model 123
3.9 Equilibrium constants 124
3.9.1 Derivation and definition 124
3.9.2 Law of mass action 125
3.9.2.1 Le Chatelier's principle 126
3.9.3 KD values, apparent equilibrium constants, and the solubility product 127
3.9.4 Henry's law and gas solubilities 128
3.9.5 Temperature dependence of equilibrium constant 128
3.9.6 Pressure dependence of equilibrium constant 129
3.10 Practical approach to electrolyte equilibrium 130
3.10.1 Choosing components and species 130
3.10.2 Mass balance 130
3.10.3 Electrical neutrality 131
3.10.4 Equilibrium constant expressions 132
3.11 Oxidation and reduction 133
3.11.1 Redox in aqueous solutions 134
3.11.1.1 Hydrogen scale potential, EH 135
3.11.1.2 Alternative representation of redox state: p& epsiv
3.11.1.3 p& epsiv
3.11.2 Redox in magmatic systems 142
3.12 Summary 143
References and suggestions for further reading 144
Problems 145
Chapter 4 Applications of thermodynamics to the Earth 150
4.1 Introduction 150
4.2 Activities in Nonideal Solid Solutions 150
4.2.1 Mathematical models of real solutions: Margules equations 150
4.2.1.1 The symmetric solution model 151
4.2.1.2 The asymmetric solution model 152
4.3 Exsolution Phenomena 155
4.4 Thermodynamics and Phase Diagrams 157
4.4.1 The thermodynamics of melting 158
4.4.2 Thermodynamics of phase diagrams for binary systems 160
4.4.2.1 An example of a simple binary system with complete solution: albite–anorthite 162
4.4.3 Phase diagrams for multicomponent systems 163
4.5 Geothermometry and Geobarometry 165
4.5.1 Theoretical considerations 165
4.5.2 Practical thermobarometers 166
4.5.2.1 Univariant reactions and displaced equilibria 166
4.5.2.2 Solvus equilibria 168
4.5.2.3 Exchange reactions 170
4.6 Thermodynamic Models of Magmas 176
4.6.1 Structure of silicate melts 177
4.6.2 Magma solution models 178
4.6.2.1 The regular solution model of Ghiorso and others: “MELTS” 179
4.7 Reprise: Thermodynamics of Electrolyte Solutions 182
4.7.1 Equation of state for water 183
4.7.2 Activities and mean ionic and single ion quantities 183
4.7.2.1 Relationship between activity and molality of a salt 184
4.7.2.2 Mean ionic quantities 185
4.7.2.3 Single ion properties 187
4.7.3 Activities in high ionic strength solutions 188
4.7.3.1 Correction for the concentration of water 188
4.7.3.2 Effects of solvation 188
4.7.3.3 Effects of ion association 189
4.7.3.4 Alternative expressions for activity coefficients 192
4.7.3.5 Pitzer equations 194
4.7.4 Electrolyte solutions at elevated temperature and pressure 196
4.7.4.1 Born equation 196
4.7.4.2 The HKF model 197
4.7.4.3 Properties of ore?forming hydrothermal solutions 198
4.8 Summary 200
References and Suggestions for Further Reading 201
Problems 204
Chapter 5 Kinetics: the pace of things 208
5.1 Introduction 208
5.2 Reaction Kinetics 209
5.2.1 Elementary and overall reactions 209
5.2.2 Reaction mechanisms 209
5.2.3 Reaction rates 210
5.2.3.1 The reaction rate for an elementary reaction: composition dependence 210
5.2.3.2 The reaction rate for an elementary reaction: temperature dependence 211
5.2.3.3 A general form of the rate equation 213
5.2.4 Rates of complex reactions 216
5.2.4.1 Chain reactions and branching 217
5.2.4.2 Rate?determining step 218
5.2.5 Steady state and equilibrium 219
5.3 Relationships Between Kinetics and Thermodynamics 221
5.3.1 Principle of detailed balancing 221
5.3.2 Enthalpy and activation energy 221
5.3.3 Aspects of transition state theory 222
5.4 Diffusion 228
5.4.1 Diffusion flux and Fick's laws 228
5.4.1.1 Solutions to Fick's second law 230
5.4.2 Diffusion in multicomponent systems 232
5.4.3 Driving force and mechanism of diffusion 238
5.4.4 Diffusion in solids and the temperature dependence of the diffusion coefficient 239
5.4.5 Diffusion in liquids 241
5.4.6 Diffusion in porous media 243
5.5 Surfaces, Interfaces, and Interface Processes 243
5.5.1 The surface free energy 245
5.5.2 The Kelvin effect 245
5.5.3 Nucleation and crystal growth 246
5.5.3.1 Nucleation 246
5.5.3.2 Nucleation rate 247
5.5.3.3 Heterogeneous nucleation 249
5.5.3.4 Diffusion?limited and heat?flow limited growth 250
5.5.3.5 Grain coarsening, static annealing, and Ostwald ripening 251
5.5.4 Adsorption 253
5.5.4.1 The relation between concentration and adsorption: Langmuir and Freundlich isotherms 253
5.5.5 Catalysis 254
5.6 Kinetics of Dissolution 257
5.6.1 Simple oxides 258
5.6.2 Silicates 260
5.6.3 Nonsilicates 264
5.7 Diagenesis 264
5.7.1 Compositional gradients in accumulating sediment 265
5.7.2 Reduction of sulfate in accumulating sediment 267
5.8 Summary 268
References and Suggestions for Further Reading 270
Problems 272
Chapter 6 Aquatic chemistry 276
6.1 Introduction 276
6.2 Acid–base reactions 276
6.2.1 Proton accounting, charge balance, and conservation equations 277
6.2.1.1 Proton accounting 277
6.2.1.2 Conservation equations 279
6.2.1.3 Charge balance 279
6.2.2 The carbonate system 280
6.2.2.1 Equivalence points 284
6.2.3 Conservative and nonconservative ions 284
6.2.4 Total alkalinity and carbonate alkalinity 284
6.2.4.1 Alkalinity determination and titration curves 286
6.2.5 Buffer intensity 288
6.3 Complexation 289
6.3.1 Stability constants 290
6.3.2 Water?related complexes 291
6.3.3 Other complexes 294
6.3.4 Complexation in fresh waters 295
6.4 Dissolution and precipitation reactions 298
6.4.1 Calcium carbonate in groundwaters and surface waters 298
6.4.2 Solubility of Mg 299
6.4.3 Solubility of SiO2 304
6.4.4 Solubility of Al(OH)3 and other hydroxides 305
6.4.5 Dissolution of silicates and related minerals 306
6.5 Clays and their properties 308
6.5.1 Clay mineralogy 309
6.5.1.1 Kaolinite group (1:1 clays) 309
6.5.1.2 Pyrophyllite group (2:1 clays) 309
6.5.1.3 Chlorite group (2:2 clays) 311
6.5.2 Ion?exchange properties of clays 311
6.6 Mineral surfaces and their interaction with solutions 312
6.6.1 Adsorption 313
6.6.2 Development of surface charge and the electric double layer 317
6.6.2.1 Determination of surface charge 319
6.6.2.2 Surface potential and the double layer 320
6.6.2.3 Effect of the surface potential on adsorption 322
6.7 Summary 325
References and suggestions for further reading 326
Problems 326
Chapter 7 Trace elements in igneous processes 329
7.1 Introduction 329
7.1.1 Why care about trace elements? 329
7.1.2 What is a trace element? 330
7.2 Behavior of the elements 331
7.2.1 Goldschmidt's classification 331
7.2.2 The geochemical periodic table 333
7.2.2.1 The volatile elements 334
7.2.2.2 The semivolatiles 335
7.2.2.3 Alkali and alkaline earth elements 335
7.2.2.4 The rare earth elements and Y 336
7.2.2.5 The HFS elements 339
7.2.2.6 The first series transition metals 340
7.2.2.7 The noble metals 340
7.2.2.8 Other elements 342
7.3 Distribution of trace elements between coexisting phases 344
7.3.1 The partition coefficient 344
7.3.2 Thermodynamic basis 344
7.4 Factors governing the value of partition coefficients 345
7.4.1 Temperature and pressure dependence of the partition coefficient 345
7.4.2 Ionic size and charge 345
7.4.2.1 Goldschmidt's rules of substitution 347
7.4.2.2 Quantitative treatment of ionic size and charge 347
7.4.3 Compositional dependency 351
7.4.4 Mineral–liquid partition coefficients for mafic and ultramafic systems 355
7.5 Crystal?field effects 358
7.5.1 Crystal?field theory 358
7.5.2 Crystal?field influences on transition metal partitioning 362
7.6 Trace element distribution during partial melting 363
7.6.1 Equilibrium or batch melting 363
7.6.2 Fractional melting 364
7.6.3 Zone refining 364
7.6.4 Multiphase solids 364
7.6.5 Continuous melting 365
7.6.6 Constraints on melting models 369
7.6.6.1 Relationship between melt fraction and temperature and pressure 369
7.6.6.2 Mantle permeability and melt distribution and withdrawal 373
7.6.6.3 Realistic models of mantle melting 374
7.7 Trace element distribution during crystallization 376
7.7.1 Equilibrium crystallization 376
7.7.2 Fractional crystallization 376
7.7.3 In situ crystallization 377
7.7.4 Crystallization in open system magma chambers 378
7.7.5 Comparing partial melting and crystallization 380
7.8 Summary of trace element variations during melting and crystallization 381
References and suggestions for further reading 382
Problems 384
Chapter 8 Radiogenic isotope geochemistry 387
8.1 Introduction 387
8.2 Physics of the Nucleus and the Structure of Nuclei 389
8.2.1 Nuclear structure and energetics 389
8.2.2 The decay of excited and unstable nuclei 393
8.2.2.1 Gamma decay 393
8.2.2.2 Alpha decay 393
8.2.2.3 Beta decay 394
8.2.2.4 Electron capture 395
8.2.2.5 Spontaneous fission 396
8.3 Basics of Radiogenic Isotope Geochemistry and Geochronology 398
8.4 Decay Systems and their Applications 403
8.4.1 Rb?Sr 403
8.4.2 Sm?Nd 404
8.4.3 Lu?Hf 408
8.4.4 Re?Os 411
8.4.5 La?Ce 416
8.4.6 U?Th?Pb 417
8.4.7 U and Th decay series isotopes 423
8.4.8 Isotopes of He and other rare gases 430
8.4.8.1 Helium 430
8.4.8.2 Neon 433
8.4.8.3 K?Ar?Ca 434
8.5 “Extinct” and Cosmogenic Nuclides 437
8.5.1 “Extinct” radionuclides and their daughters 437
8.5.2 Cosmogenic nuclides 440
8.5.2.1 14C geochronology 441
8.5.2.2 36Cl in hydrology 442
8.5.2.3 Be isotopes 443
8.5.2.4 Surface exposure ages 443
8.5.3 Cosmic ray exposure ages of meteorites 444
8.6 Summary 444
References and suggestions for further reading 445
Problems 449
Chapter 9 Stable isotope geochemistry 452
9.1 Introduction 452
9.1.1 Scope of stable isotope geochemistry 453
9.1.2 Some definitions 454
9.1.2.1 The ? notation 454
9.1.2.2 The fractionation factor 455
9.2 Theoretical considerations 455
9.2.1 Equilibrium isotope fractionations 455
9.2.1.1 The quantum mechanical origin of isotopic fractionations 455
9.2.1.2 Predicting isotopic fractionations from statistical mechanics 456
9.2.1.3 Reduced partition function ratios: ??factors 461
9.2.1.4 Temperature dependence of the fractionation factor 461
9.2.1.5 Composition and pressure dependence 462
9.2.2 Kinetic isotope fractionations 463
9.2.3 Mass?dependent and mass?independent fractionations 465
9.2.4 Isotopic clumping 467
9.3 Isotope Geothermometry 469
9.4 Isotopic Fractionation in the Hydrologic System 473
9.5 Isotopic Fractionation in Biological Systems 475
9.5.1 Carbon isotope fractionation during photosynthesis 475
9.5.2 Nitrogen isotope fractionation in biological processes 478
9.5.3 Oxygen and hydrogen isotope fractionation by plants 479
9.5.4 Biological fractionation of sulfur isotopes 479
9.5.5 Isotopes and diet: you are what you eat 480
9.5.5.1 Isotopes in archaeology 482
9.5.6 Isotopic “fossils” and the earliest life 483
9.6 Paleoclimatology 484
9.6.1 The marine Quaternary ?18O record and Milankovitch cycles 485
9.6.2 The record in glacial ice 488
9.6.3 Soils and paleosols 489
9.7 Hydrothermal systems and Ore deposits 491
9.7.1 Water in hydrothermal systems 491
9.7.2 Water–rock ratios 492
9.7.3 Sulfur isotopes and ore deposits 493
9.8 Mass?independent sulfur isotope fractionation and the rise of atmospheric oxygen 496
9.9 Stable Isotopes in the Mantle and Magmatic Systems 498
9.9.1 Stable isotopic composition of the mantle 498
9.9.1.1 Oxygen 498
9.9.1.2 Hydrogen 499
9.9.1.3 Carbon 500
9.9.1.4 Nitrogen 502
9.9.1.5 Sulfur 502
9.9.2 Stable isotopes in crystallizing magmas 504
9.9.3 Combined fractional crystallization and assimilation 505
9.10 NonTraditional stable Isotopes 506
9.10.1 Boron isotopes 506
9.10.2 Li isotopes 510
9.10.3 Calcium isotopes 512
9.10.4 Silicon isotopes 514
9.10.5 Iron isotopes 518
9.10.6 Mercury isotopes 521
9.11 summary 523
References and Suggestions for Further Reading 524
Problems 530
Chapter 10 The big picture: cosmochemistry 532
10.1 Introduction 532
10.2 In the beginning … nucleosynthesis 533
10.2.1 Astronomical background 533
10.2.2 The polygenetic hypothesis of Burbidge, Burbidge, Fowler, and Hoyle 534
10.2.3 Cosmological nucleosynthesis 536
10.2.4 Nucleosynthesis in stellar interiors 537
10.2.4.1 Hydrogen, helium, and carbon burning stars 537
10.2.4.2 The e?process 539
10.2.4.3 The s?process 540
10.2.5 Explosive nucleosynthesis 540
10.2.5.1 The r?process 542
10.2.5.2 The p?processes 543
10.2.6 Nucleosynthesis in interstellar space 544
10.2.7 Summary 545
10.3 Meteorites: Essential clues to the beginning 546
10.3.1 Chondrites: the most primitive objects 546
10.3.1.1 Chondrite classes and their compositions 547
10.3.1.2 Chondrules 554
10.3.1.3 Calcium–aluminum inclusions 555
10.3.1.4 Amoeboid olivine aggregates 556
10.3.1.5 The chondrite matrix 556
10.3.2 Differentiated meteorites 556
10.3.2.1 Achondrites 556
10.3.2.2 Irons 558
10.3.2.3 Stony?irons 559
10.4 Time and the isotopic composition of the solar system 559
10.4.1 Meteorite ages 559
10.4.1.1 Conventional methods 559
10.4.1.2 Extinct radionuclides 561
10.4.2 Cosmic ray exposure ages and meteorite parentbodies 565
10.4.3 Asteroids as meteorite parentbodies 566
10.4.4 Isotopic anomalies in meteorites 570
10.4.4.1 Neon alphabet soup and star dust 570
10.4.4.2 Isotopic variations in bulk meteorites 572
10.5 Astronomical and theoretical constraints on solar system formation 576
10.5.1 Evolution of young stellar objects 577
10.5.2 The condensation sequence 580
10.5.3 The solar system 585
10.5.4 Other solar systems 589
10.6 Building a habitable solar system 589
10.6.1 Summary of observations 589
10.6.2 Formation of the planets 590
10.6.3 Chemistry and history of the Moon 594
10.6.3.1 Geology and history of the Moon 595
10.6.3.2 Composition of the Moon 596
10.6.4 The giant impact hypothesis and formation of the Earth and the Moon 597
10.6.5 Tungsten isotopes and the age of the Earth 597
10.7 Summary 599
References and Suggestions for Further Reading 600
Problems 604
Chapter 11 Geochemistry of the solid Earth 606
11.1 Introduction 606
11.2 The earth's mantle 606
11.2.1 Structure of the mantle and geophysical constraints on mantle composition 608
11.2.2 Cosmochemical constraints on mantle composition 609
11.2.3 Observational constraints on mantle composition 610
11.2.4 Mantle mineralogy and phase transitions 611
11.2.4.1 Upper mantle phase changes 611
11.2.4.2 The transition zone 612
11.2.4.3 The lower mantle 613
11.3 Estimating mantle and bulk earth composition 616
11.3.1 Major element composition 616
11.3.2 Trace element composition 617
11.3.3 Composition of the bulk silicate earth 620
11.4 The earth's core and its composition 622
11.4.1 Geophysical constraints 622
11.4.2 Cosmochemical constraints 623
11.4.3 Experimental constraints 625
11.5 Mantle geochemical reservoirs 628
11.5.1 Evidence from oceanic basalts 629
11.5.2 Evolution of the depleted MORB mantle 632
11.5.3 Evolution of mantle plume reservoirs 636
11.5.3.1 The recycling paradigm 638
11.5.3.2 A primitive component as well 639
11.5.4 The subcontinental lithospheric mantle 643
11.6 The crust 646
11.6.1 The oceanic crust 646
11.6.1.1 Structure of the oceanic crust 647
11.6.1.2 Composition of the oceanic crust 648
11.6.2 The continental crust 651
11.6.2.1 Composition of the upper continental crust 652
11.6.2.2 Composition of the middle and lower continental crust 653
11.6.2.3 Composition of the total continental crust 658
11.6.3 Growth of the continental crust 661
11.6.4 Refining the continental crust 667
11.7 Subduction zone processes 668
11.7.1 Major element composition 668
11.7.2 Trace element composition 669
11.7.3 Isotopic composition and sediment subduction 670
11.7.4 Magma genesis in subduction zones 672
11.8 Summary 675
References and suggestions for further reading 676
Problems 682
Chapter 12 Organic geochemistry, the carbon cycle, and climate 684
12.1 Introduction 684
12.2 A Brief Biological Background 685
12.3 Organic Compounds and Their Nomenclature 686
12.3.1 Hydrocarbons 686
12.3.2 Functional groups 688
12.3.3 Short?hand notations of organic molecules 691
12.3.4 Biologically important organic compounds 691
12.3.4.1 Carbohydrates 692
12.3.4.2 Nitrogen?bearing organic compounds: proteins, nucleotides, and nucleic acids 693
12.3.4.3 Lipids 694
12.3.4.4 Lignin and tannins 697
12.4 The Chemistry of Life: Important Biochemical Processes 698
12.4.1 Photosynthesis 698
12.4.2 Respiration 700
12.4.3 The stoichiometry of life 702
12.5 Organic Matter in Natural Waters and Soils 702
12.5.1 Organic matter in soils 702
12.5.2 Dissolved organic matter in aquatic and marine environments 704
12.5.3 Hydrocarbons in natural waters 710
12.6 Chemical Properties of Organic Molecules 711
12.6.1 Acid–base properties 711
12.6.2 Complexation 711
12.6.3 Adsorption phenomena 717
12.6.3.1 The hydrophobic effect and hydrophobic adsorption 717
12.6.3.2 Other adsorption mechanisms 718
12.6.3.3 Dependence on pH 719
12.6.3.4 Role in weathering 720
12.7 Sedimentary Organic Matter 721
12.7.1 Preservation of organic matter 721
12.7.2 Diagenesis of marine sediments 724
12.7.3 Diagenesis of aquatic sediments 726
12.7.4 Summary of diagenetic changes 727
12.7.5 Biomarkers 727
12.7.6 Kerogen and bitumen 732
12.7.6.1 Kerogen classification 733
12.7.6.2 Bitumen 734
12.7.7 Isotope composition of sedimentary organic matter 735
12.7.7.1 Bulk isotopic composition 735
12.7.7.2 Compound?specific isotopic analysis 737
12.8 Petroleum and Coal Formation 738
12.8.1 Petroleum 738
12.8.1.1 Catagenesis and metagenesis 738
12.8.1.2 Migration and post?generation compositional evolution 740
12.8.1.3 Composition of crude oils 741
12.8.2 Compositional evolution of coal 742
12.9 The Carbon Cycle and Climate 744
12.9.1 Greenhouse energy balance 744
12.9.2 The exogenous carbon cycle 745
12.9.3 The deep carbon cycle 748
12.9.4 Evolutionary changes affecting the carbon cycle 750
12.9.5 The carbon cycle and climate through time 751
12.9.6 Fossil fuels and anthropogenic climate change 754
12.10 summary 757
References and Suggestions for Further Reading 758
Problems 762
Chapter 13 The land surface: weathering, soils, and streams 765
13.1 Introduction 765
13.2 Redox in natural waters 766
13.2.1 Biogeochemical redox reactions 767
13.2.2 Eutrophication 768
13.2.3 Redox buffers and transition metal chemistry 769
13.3 Weathering, Soils, and Biogeochemical cycling 774
13.3.1 Soil profiles 775
13.3.2 Chemical cycling in soils 777
13.3.3 Biogeochemical cycling 778
13.4 Weathering rates 781
13.4.1 The in situ approach 782
13.4.1.1 Weathering profiles 782
13.4.1.2 Weathering indices 784
13.4.1.3 Erosion 787
13.4.2 The watershed approach 787
13.4.2.1 Watersheds in the Coweeta Basin, Southern Appalachians 788
13.4.2.2 Thermodynamic and kinetic assessment of stream compositions 791
13.4.3 Factors controlling weathering rates 793
13.4.3.1 Lithology 793
13.4.3.2 Climate: temperature, precipitation, and hydrology 794
13.4.3.3 Topography and mechanical erosion 795
13.4.3.4 Role of biota 796
13.5 The composition of rivers 797
13.6 Continental saline waters 800
13.7 Summary 803
References and suggestions for further reading 804
Problems 805
Chapter 14 The ocean as a chemical system 808
14.1 Introduction 808
14.2 Some background oceanographic concepts 808
14.2.1 Salinity, chlorinity, temperature, and density 809
14.2.2 Circulation of the ocean and the structure of ocean water 809
14.2.2.1 Surface circulation 810
14.2.2.2 Density structure and deep circulation 810
14.3 Composition of seawater 814
14.3.1 Speciation in seawater 817
14.3.2 Conservative elements 818
14.3.3 Dissolved gases 818
14.3.3.1 O2 variation in the ocean 819
14.3.3.2 Distribution of CO2 in the ocean 821
14.3.4 Seawater pH and alkalinity 822
14.3.5 Carbonate dissolution and precipitation 823
14.3.6 Nutrient elements 827
14.3.7 Particle?reactive elements 831
14.3.8 One?dimensional advection–diffusion model 832
14.4 Sources and sinks of dissolved matter in seawater 836
14.4.1 Residence time 837
14.4.2 River and groundwater flux to the oceans 838
14.4.2.1 Estuaries 838
14.4.2.2 Submarine groundwater discharge 842
14.4.3 The hydrothermal flux 843
14.4.3.1 The composition of hydrothermal fluids 844
14.4.3.2 Evolution of hydrothermal fluids 845
14.4.3.3 Hydrothermal fluxes 850
14.4.4 The atmospheric source 851
14.4.5 Sedimentary sinks and sources 854
14.4.5.1 Biogenic sediments 854
14.4.5.2 Evaporites 856
14.4.5.3 Red clays, metalliferous sediments, and Mn nodules 857
14.4.5.4 Porewater fluxes into and out of sediments 859
14.5 Summary 862
References 863
Problems 866
Chapter 15 Applied geochemistry 869
15.1 Introduction 869
15.2 Mineral resources 869
15.2.1 Ore deposits: definitions and classification 870
15.2.1.1 Definitions 870
15.2.1.2 Classification of ore deposits 870
15.2.2 Orthomagmatic ore deposits 871
15.2.3 Hydromagmatic ore deposits 874
15.2.3.1 Metal solubility in ore forming fluids 875
15.2.3.2 Porphyry copper deposits 878
15.2.3.3 Tin alkali granite deposits 882
15.2.4 Hydrothermal ore deposits 884
15.2.4.1 Volcanogenic massive sulfide deposits 884
15.2.4.2 Stratiform copper deposits 887
15.2.4.3 Mississippi Valley?type Zn?Pb deposits 889
15.2.5 Sedimentary ore deposits 890
15.2.5.1 Banded iron formations 890
15.2.5.2 Evaporites and brines 894
15.2.6 Weathering?related ore deposits 896
15.2.6.1 Bauxites and laterites 896
15.2.7 Rare earth ore deposits 898
15.2.8 Geochemical exploration: finding future resources 902
15.2.8.1 Primary dispersion 903
15.2.8.2 Secondary dispersion 904
15.2.8.3 Exploration process 905
15.3 Environmental Geochemistry 906
15.3.1 Eutrophication redux 907
15.3.2 Toxic metals in the environment 909
15.3.2.1 Mine wastes 910
15.3.2.2 Atmospheric lead 913
15.3.2.3 Mercury 916
15.3.3 Acid deposition 919
15.4 Summary 924
References 925
Problems 930
Appendix I Constants, units and conversions 932
Index 935
EULA 960

Erscheint lt. Verlag 17.7.2020
Sprache englisch
Themenwelt Naturwissenschaften Geowissenschaften Geologie
Schlagworte applied geochemistry • Boden- u. Geochemie • Chemie • Chemistry • earth • earth composition • earth science • earth sciences • Geochemical Exploration • Geochemie • Geochemie, Mineralogie • Geochemistry • Geochemistry & Minerology • geochemistry foundations • geological • Geowissenschaften • Kinetics • magmatic systems • Oceanography • planet formation • Soil & Geochemistry • Solar System • Structural Geology & Tectonics • Strukturgeologie • Strukturgeologie, Tektonik • thermodynamics
ISBN-10 1-119-43810-1 / 1119438101
ISBN-13 978-1-119-43810-6 / 9781119438106
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich