Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation - Spyridon Kamvissis, Kenneth D.T-R McLaughlin, Peter D. Miller

Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation

Buch | Hardcover
312 Seiten
2003
Princeton University Press (Verlag)
9780691114835 (ISBN)
CHF 153,60 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Providing an asymptotic analysis via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrodinger equation in the semiclassical asymptotic regime, this text exploits complete integrability to establish pointwise asymptotics for this problem's solution.
This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrodinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing the semiclassical behavior. In doing so they also aim to explain the observed gradient catastrophe for the underlying nonlinear elliptic partial differential equations, and to set forth a detailed, pointwise asymptotic description of the violent oscillations that emerge following the gradient catastrophe.
To achieve this, the authors have extended the reach of two powerful analytical techniques that have arisen through the asymptotic analysis of integrable systems: the Lax-Levermore-Venakides variational approach to singular limits in integrable systems, and Deift and Zhou's nonlinear Steepest-Descent/Stationary Phase method for the analysis of Riemann-Hilbert problems. In particular, they introduce a systematic procedure for handling certain Riemann-Hilbert problems with poles accumulating on curves in the plane. This book, which includes an appendix on the use of the Fredholm theory for Riemann-Hilbert problems in the Holder class, is intended for researchers and graduate students of applied mathematics and analysis, especially those with an interest in integrable systems, nonlinear waves, or complex analysis.

Spyridon Kamvissis is a researcher at the Max Planck Institute of Mathematics in Bonn, Germany, and a Professor of Mathematics at the National Technical University in Athens, Greece. Kenneth D. T-R McLaughlin is Associate Professor of Mathematics at the University of North Carolina, Chapel Hill. Peter D. Miller is Assistant Professor of Mathematics at the University of Michigan, Ann Arbor.

Erscheint lt. Verlag 14.9.2003
Reihe/Serie Annals of Mathematics Studies
Zusatzinfo 50 line illus.
Verlagsort New Jersey
Sprache englisch
Maße 152 x 235 mm
Gewicht 539 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Naturwissenschaften Physik / Astronomie Quantenphysik
ISBN-13 9780691114835 / 9780691114835
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95