Polynomial Operator Equations in Abstract Spaces and Applications
Seiten
2020
CRC Press (Verlag)
978-0-367-44787-8 (ISBN)
CRC Press (Verlag)
978-0-367-44787-8 (ISBN)
This book presents new and important old results about polynomial equations as well as an analysis of general new and efficient iterative methods for their numerical solution in various space settings. It is intended for senior undergraduate and graduate students.
Polynomial operators are a natural generalization of linear operators. Equations in such operators are the linear space analog of ordinary polynomials in one or several variables over the fields of real or complex numbers. Such equations encompass a broad spectrum of applied problems including all linear equations. Often the polynomial nature of many nonlinear problems goes unrecognized by researchers. This is more likely due to the fact that polynomial operators - unlike polynomials in a single variable - have received little attention. Consequently, this comprehensive presentation is needed, benefiting those working in the field as well as those seeking information about specific results or techniques.
Polynomial Operator Equations in Abstract Spaces and Applications - an outgrowth of fifteen years of the author's research work - presents new and traditional results about polynomial equations as well as analyzes current iterative methods for their numerical solution in various general space settings.
Topics include:
Special cases of nonlinear operator equations
Solution of polynomial operator equations of positive integer degree n
Results on global existence theorems not related with contractions
Galois theory
Polynomial integral and polynomial differential equations appearing in radiative transfer, heat transfer, neutron transport, electromechanical networks, elasticity, and other areas
Results on the various Chandrasekhar equations
Weierstrass theorem
Matrix representations
Lagrange and Hermite interpolation
Bounds of polynomial equations in Banach space, Banach algebra, and Hilbert space
The materials discussed can be used for the following studies
Advanced numerical analysis
Numerical functional analysis
Functional analysis
Approximation theory
Integral and differential equation
Polynomial operators are a natural generalization of linear operators. Equations in such operators are the linear space analog of ordinary polynomials in one or several variables over the fields of real or complex numbers. Such equations encompass a broad spectrum of applied problems including all linear equations. Often the polynomial nature of many nonlinear problems goes unrecognized by researchers. This is more likely due to the fact that polynomial operators - unlike polynomials in a single variable - have received little attention. Consequently, this comprehensive presentation is needed, benefiting those working in the field as well as those seeking information about specific results or techniques.
Polynomial Operator Equations in Abstract Spaces and Applications - an outgrowth of fifteen years of the author's research work - presents new and traditional results about polynomial equations as well as analyzes current iterative methods for their numerical solution in various general space settings.
Topics include:
Special cases of nonlinear operator equations
Solution of polynomial operator equations of positive integer degree n
Results on global existence theorems not related with contractions
Galois theory
Polynomial integral and polynomial differential equations appearing in radiative transfer, heat transfer, neutron transport, electromechanical networks, elasticity, and other areas
Results on the various Chandrasekhar equations
Weierstrass theorem
Matrix representations
Lagrange and Hermite interpolation
Bounds of polynomial equations in Banach space, Banach algebra, and Hilbert space
The materials discussed can be used for the following studies
Advanced numerical analysis
Numerical functional analysis
Functional analysis
Approximation theory
Integral and differential equation
Argyros, Ioannis K.
Introduction 1. Quadratic Equations and Perturbation Theory 2. More Methods for Solving Quadratic Equations 3. Polynomial Equations in Banach Space 4. Integral and Differential Equations 5. Polynomial Operators in Linear Spaces 6. General Methods for Solving Nonlinear Equations
| Erscheinungsdatum | 01.07.2020 |
|---|---|
| Verlagsort | London |
| Sprache | englisch |
| Maße | 156 x 234 mm |
| Gewicht | 1080 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
| Naturwissenschaften ► Physik / Astronomie | |
| ISBN-10 | 0-367-44787-8 / 0367447878 |
| ISBN-13 | 978-0-367-44787-8 / 9780367447878 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
für Ingenieure und Naturwissenschaftler
Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 48,95
Buch | Softcover (2025)
Springer Vieweg (Verlag)
CHF 62,95
Buch | Softcover (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 69,95