Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Earth Environments (eBook)

eBook Download: PDF
2019 | 2. Auflage
John Wiley & Sons (Verlag)
978-1-119-41326-4 (ISBN)

Lese- und Medienproben

Earth Environments - David Huddart, Tim A. Stott
Systemvoraussetzungen
85,99 inkl. MwSt
(CHF 83,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Comprehensive coverage of the whole Earth system throughout its entire existence and beyond

Complete with a new introduction by the authors, this updated edition helps provide an understanding of the past, present, and future processes that occur on and in our Earth-the fascinating, yet potentially lethal, set of atmospheric, surface, and internal processes that interact to produce our living environment. It introduces students to our planet's four key interdependent systems: the atmosphere, lithosphere, hydrosphere and biosphere, focusing on their key components, the interactions between them, and environmental change. The book also uses geological case studies throughout, in addition to the modern processes.

Topics covered in the Second Edition of Earth Environments: Past, Present and Future include: an Earth systems model; components systems and processes; atmospheric systems; oceanography; surface and internal geological systems; biogeography; and aspects of Earth's record. The book also discusses the impact of climate and environmental change in a final chapter that draws together Earth's systems and their evolution, and looks ahead to potential future changes in Earth's environments.

  • Updated to include all the major developments since 2008
  • Features research boxes containing summaries based on recent key journal articles
  • Includes a companion web site containing multiple choice revision quizzes for students, PowerPoint slides for lecturers, useful links, and more
  • Presents further reading for each topic so that students can build their knowledge base to underpin their own undergraduate research project/dissertation
  • Offers additional case studies in each chapter for enhanced reader understanding

Earth Environments: Past, Present and Future is an excellent text for undergraduates in geosciences, environmental science, physical geography, natural hazards, and ecology.



David Huddart, PhD, is Emeritus Professor and former Associate Dean of Research and Knowledge Transfer at Liverpool John Moores University, UK.

Tim A. Stott, PhD, is Professor of Physical Geography and Outdoor Education at Liverpool John Moores University, UK.


Comprehensive coverage of the whole Earth system throughout its entire existence and beyond Complete with a new introduction by the authors, this updated edition helps provide an understanding of the past, present, and future processes that occur on and in our Earth the fascinating, yet potentially lethal, set of atmospheric, surface, and internal processes that interact to produce our living environment. It introduces students to our planet s four key interdependent systems: the atmosphere, lithosphere, hydrosphere and biosphere, focusing on their key components, the interactions between them, and environmental change. The book also uses geological case studies throughout, in addition to the modern processes. Topics covered in the Second Edition of Earth Environments: Past, Present and Future include: an Earth systems model; components systems and processes; atmospheric systems; oceanography; surface and internal geological systems; biogeography; and aspects of Earth's record. The book also discusses the impact of climate and environmental change in a final chapter that draws together Earth's systems and their evolution, and looks ahead to potential future changes in Earth s environments. Updated to include all the major developments since 2008 Features research boxes containing summaries based on recent key journal articles Includes a companion web site containing multiple choice revision quizzes for students, PowerPoint slides for lecturers, useful links, and more Presents further reading for each topic so that students can build their knowledge base to underpin their own undergraduate research project/dissertation Offers additional case studies in each chapter for enhanced reader understanding Earth Environments: Past, Present and Future is an excellent text for undergraduates in geosciences, environmental science, physical geography, natural hazards, and ecology.

David Huddart, PhD, is Emeritus Professor and former Associate Dean of Research and Knowledge Transfer at Liverpool John Moores University, UK. Tim A. Stott, PhD, is Professor of Physical Geography and Outdoor Education at Liverpool John Moores University, UK.

Cover 1
Title Page 5
Copyright Page 6
Contents 7
About the Companion Website 25
Introduction 27
Section I Introduction to Earth Systems 35
Chapter 1 Introduction to Earth Systems 37
1.1 Introduction to Earth’s Formation 38
1.2 Introduction to Earth Spheres 39
1.3 Scales in Space and Time 41
1.4 Systems and Feedback 42
1.5 Open and Closed Flow Systems 43
1.6 Equilibrium in Systems 45
1.7 Time Cycles in Systems 47
Section II Atmospheric and Ocean Systems 51
Chapter 2 Structure and Composition of the Atmosphere 53
2.1 Structure of the Atmosphere 54
2.2 Composition of the Atmosphere 55
2.2.1 Ozone in the Upper Atmosphere 55
2.2.2 Ozone Holes 56
2.3 Carbon Dioxide and Methane 57
2.4 Water Vapour 58
2.4.1 Particulate Matter 58
2.4.2 Acid Rain 59
Chapter 3 Energy in the Atmosphere and the Earth Heat Budget 61
3.1 Introduction 62
3.2 Solar Radiation 62
3.2.1 Radiation Laws 63
3.2.2 Global Radiation 65
3.2.2.1 The Solar Constant 66
3.2.2.2 The Distance from the Sun 66
3.2.2.3 The Altitude of the Sun in the Sky 66
3.2.2.4 Length of Day and Night 67
3.2.3 Insolation Through the Year and by Latitude 67
3.2.4 Insolation Losses in the Atmosphere: the Solar Energy Cascade 67
3.2.5 Albedo 70
3.2.6 Re-radiation and the Greenhouse Effect 70
3.2.7 Net Radiation and the Energy Balance 71
Chapter 4 Moisture in the Atmosphere 75
4.1 Introduction 76
4.2 The Global Hydrological Cycle 76
4.2.1 Evaporation, Humidity, and Condensation 76
4.2.1.1 Evaporation 76
4.2.1.2 Humidity 79
4.2.1.3 Condensation 79
4.3 Air Stability and Instability 80
4.4 Clouds 82
4.5 Precipitation 83
4.5.1 How Clouds Make Precipitation 83
4.5.2 Types of Precipitation 85
Chapter 5 Atmospheric Motion 89
5.1 Introduction 90
5.2 Atmospheric Pressure 90
5.3 Winds and Pressure Gradients 92
5.3.1 Land and Sea Breezes 93
5.3.2 The Coriolis Effect and Surface Winds 94
5.4 The Global Pattern of Atmospheric Circulation 96
5.4.1 The Tricellular Model 96
5.4.2 Rossby Waves and Jet Streams 98
Chapter 6 Weather Systems 101
6.1 Introduction 102
6.2 Macroscale Synoptic Systems 102
6.2.1 Air Masses 103
6.2.2 Formation of Weather Fronts 104
6.2.3 Depressions 104
6.2.4 Tropical Cyclones 107
6.2.5 Tornados 112
6.2.6 Anticyclones 113
6.3 Meso Scale: local Winds 115
6.3.1 Land and Sea Breezes 115
6.3.2 Mountain and Valley Winds 115
6.3.3 Föhn Winds 117
6.4 Microclimates 117
6.4.1 Urban Microclimate 118
6.4.2 Forest, Lake and Coastal Microclimates 123
6.5 Weather Observation and Forecasting 123
6.5.1 Measuring Weather Elements at a Land-based Weather Station 124
6.5.1.1 Temperature and Humidity 125
6.5.1.2 Wind Speed and Direction 125
6.5.1.3 Precipitation 125
6.5.2 Weather Maps and Forecasting 128
Chapter 7 World Climates 133
7.1 Introduction 134
7.2 Classification of Climate 134
7.2.1 Global Temperature Regimes 134
7.2.2 Global Precipitation Regimes 136
7.2.3 The Köppen Climate Classification System 139
7.2.3.1 Group A: Tropical/Megathermal Climates 139
7.2.3.2 Tropical Rainforest Climates (Af) 139
7.2.3.3 Tropical Monsoon Climates (Am) 140
7.2.3.4 Tropical Wet and Dry or Savannah Climates (Aw) 140
7.2.3.5 Group B: Dry (Arid and Semiarid) Climates 141
7.2.3.6 Group C: Temperate/Mesothermal Climates 142
7.2.3.7 Mediterranean Climates (Csa, Csb) 143
7.2.3.8 Humid Subtropical Climates (Cfa, Cwa) 143
7.2.3.9 Maritime Temperate Climates or Oceanic Climates (Cfb, Cwb) 143
7.2.3.10 Maritime Subarctic Climates or Subpolar Oceanic Climates (Cfc) 143
7.2.3.11 Group D: Continental/Microthermal Climates 143
7.2.3.12 Hot Summer Continental Climates (Dfa, Dwa, Dsa) 143
7.2.3.13 Warm Summer Continental or Hemiboreal Climates (Dfb, Dwb, Dsb) 143
7.2.3.14 Continental Subarctic or Boreal (Taiga) Climates (Dfc, Dwc, Dsc) 144
7.2.3.15 Continental Subarctic Climates with Extremely Severe Winters (Dfd, Dwd) 144
7.2.3.16 Group E: polar Climates 144
7.2.3.17 Tundra Climates (ET) 144
7.2.3.18 Ice Cap Climates (EF) 144
7.2.4 Other Climate Classification Systems 144
Chapter 8 Ocean Structure and Circulation Patterns 147
8.1 Introduction 148
8.2 Physical Structure of the Oceans 148
8.2.1 Gathering Information 148
8.2.2 Structure and Composition of the Oceanic Crust 148
8.2.3 Sea-Floor and Continental Margin Topography 148
8.2.4 Continental Shelf Break and DeepSea Sediments 150
8.3 Temperature Structure of the Oceans 151
8.4 Ocean Circulation 151
8.4.1 Surface Ocean Currents 153
8.4.2 Deep-Ocean Currents 155
8.5 Sea Level Change 155
Chapter 9 Atmospheric Evolution 159
9.1 Evolution of Earth’s Atmosphere 160
9.1.1 The Early Atmosphere and the Effect of Volcanic Eruptions 160
9.1.2 The Rise of Oxygen and the Biological Era 160
9.1.3 Fluctuations in Oxygen 162
9.1.4 The Effect of Humans on the Evolution of Earth’s Atmosphere 163
Chapter 10 Principles of Climate Change 165
10.1 Introduction 166
10.2 Evidence for Climate Change 167
10.2.1 Proxy Indicators for Climate Change 167
10.2.2 Glacial Periods 173
10.2.3 The Postglacial Period 173
10.2.4 The Little Ice Age 175
10.2.5 The Present Climate 175
10.3 Causes of Climate Change 179
10.3.1 External Factors 179
10.3.1.1 Variations in Solar Output 179
10.3.1.2 Changes in Earth’s Orbit 180
10.3.2 Internal Forcing 182
10.3.2.1 Surface Changes 182
10.3.2.2 Changes in Atmospheric Composition: Volcanoes, Cosmic Collisions and Aerosols 182
10.3.2.3 Variations in Greenhouse Gas Concentrations 186
10.3.3 Feedback Effects 188
Section III Endogenic Geological Systems 193
Chapter 11 Earth Materials: Mineralogy, Rocks and the Rock Cycle 195
11.1 What Is a Mineral? 196
11.1.1 From What Is Earth Made? 197
11.1.2 Atoms and Their Structure 197
11.1.3 Atoms and Bonding 197
11.1.4 Identifying Minerals 199
11.1.4.1 Colour 199
11.1.4.2 Lustre 200
11.1.4.3 Cleavage 200
11.1.4.4 Hardness 200
11.1.4.5 Density 200
11.1.5 Common Groups of Minerals 201
11.1.5.1 The Olivine Group 202
11.1.5.2 The Garnet Group 202
11.1.5.3 The Pyroxene and Amphibole Groups 202
11.1.5.4 The Clays, Micas, and Chlorites 206
11.1.5.5 Quartz 206
11.1.5.6 The Feldspar Group 206
11.1.5.7 Carbonate, Phosphate, and Sulphate Minerals 206
11.1.5.8 The Ore Minerals 206
11.1.6 Environments in which Minerals Form 207
11.2 Rocks and the Rock Cycle 207
11.3 Vulcanicity and Igneous Rocks 209
11.4 Sedimentary Rocks, Fossils and Sedimentary Structures 210
11.4.1 Classifying Sedimentary Rocks 213
11.4.2 Fossils and Sedimentary Structures 216
11.5 Metamorphic Rocks 221
Chapter 12 The Internal Structure of the Earth 225
12.1 Introduction 226
12.2 Evidence of Earth’s Composition from Drilling 226
12.3 Evidence of Earth’s Composition from Volcanoes 227
12.4 Evidence of Earth’s Composition from Meteorites 228
12.5 Using Earthquake Seismic Waves as Earth Probes 228
Chapter 13 Plate Tectonics and Volcanism: Processes, Products, and Landforms 233
13.1 Introduction 234
13.2 Global Tectonics: How Plates, Basins, and Mountains are Created 234
13.2.1 Plate Tectonics 236
13.2.1.1 The Geomorphology of Divergent Plate Boundaries and Associated Sedimentary Basins 236
13.2.1.2 The Geomorphology of Convergent Plate Boundaries and Associated Sedimentary Basins 236
13.2.1.3 The Geomorphology of Transform Margins and Associated Sedimentary Basins 237
13.2.2 Plate Motion Mechanisms 238
13.3 Volcanic Processes and the Global Tectonic Model 238
13.3.1 Magma Generation 239
13.3.2 Relationship of the Plate Boundaries to Volcanic Processes 239
13.3.2.1 Mid-ocean Ridge (MORs) Systems 239
13.3.2.2 Volcanism at Convergent Plate Boundaries 240
13.3.2.3 Destructive Plate Boundaries Where One Plate Is Continental 243
13.3.2.4 Thermal Plumes or Hot Spots 243
13.3.2.5 Tholeiitic Flood Basalts and Continental Rifting 244
13.3.2.6 Continental Rift Zone Magmatism 247
13.3.2.7 Summary of Magma Generation 248
13.4 Magma Eruption 249
13.4.1 Introduction 249
13.4.2 Physical properties of lava 251
13.4.3 Effusive Volcanism 251
13.4.3.1 Effusive Basalts 251
13.4.4 Lava Flows 253
13.5 Explosive Volcanism 254
13.6 Petrographic Features of Volcaniclastic Sediments 262
13.7 Transport and Deposition of Pyroclastic Materials 262
13.7.1 Pyroclastic Fall or Tephra Deposits 262
13.7.2 Pyroclastic Density Flows 264
13.7.2.1 Base Surges 265
13.7.2.2 Pyroclastic Flows 265
13.7.2.3 Block-and-Ash Flows 266
13.7.2.4 Lahars 267
13.7.2.5 Hyperconcentrated Flows 271
13.7.2.6 Debris Avalanches 271
13.8 The Relationship Between Volcanic Processes and the Earth’s Atmosphere and Climate 272
13.8.1 Global Atmospheric Effects of Volcanic Processes 272
13.8.1.1 Volcanic Aerosol 273
13.8.1.2 Volcanic Effects on Stratospheric Dynamics 274
13.8.1.3 Radiative Effects 275
13.8.1.4 Tropospheric Cooling 275
13.8.1.5 Possible Links Between the El Niño–Southern Oscillation (ENSO) and Volcanic Events 276
13.8.1.6 Possible Links Between Volcanic Activity and Climatic Change 276
13.8.2 Examples of Individual Volcanic Eruption Climatic Disturbances 278
13.8.2.1 Laki Fissure Eruption of 1783 278
13.8.2.2 Toba Supervolcano 278
13.9 Plate Tectonics, Uniformitarianism and Earth History 279
13.9.1 Superplumes, Supercontinents, Plume Tectonics and Plate Tectonics 279
13.9.2 The Opening of Sedimentary Basins: Continental Rifting and the Evolution of Passive Margins 281
13.9.3 The Closure of Sedimentary Basins: Basins to Mountains 283
13.9.4 Four Types of Mountain-Building Scenario 284
13.9.4.1 Continental Margin Orogenesis 284
13.9.4.2 Continental and Collage Collisions 285
13.9.4.3 Transpression 287
13.9.5 Tectonic Basins Within Plate Interiors 287
Chapter 14 Geotectonics: Processes, Structures, and Landforms 289
14.1 Introduction 290
14.2 Tectonic Structures 290
14.2.1 Controls on Rock Deformation 291
14.2.2 Deformation Structures 291
14.2.2.1 Folds 291
14.2.2.2 Faults 293
14.2.2.3 Joints 296
14.2.2.4 Basin and Range 297
14.3 Tectonic Structures as Lines of Weakness in Landscape Evolution 297
Section IV Exogenic Geological Systems 299
Chapter 15 Weathering Processes and Products 301
15.1 Introduction 302
15.2 Physical or Mechanical Weathering 304
15.2.1 Forces and Rock Strength 304
15.2.2 Mechanisms of Mechanical Weathering 305
15.2.2.1 Volumetric Change of a Rock Mass 306
15.2.2.2 Volumetric Change Within Pores, Voids and Fissures 310
15.2.3 Controls on the Intensity of Mechanical Weathering 314
15.3 Chemical Weathering 315
15.3.1 Rock-Forming Minerals and Weathering 315
15.3.2 Processes of Chemical Weathering 315
15.3.2.1 Solution 315
15.3.2.2 Hydration 318
15.3.2.3 Isomorphous Replacement 320
15.3.2.4 Oxidation and Reduction 320
15.3.3 Products of Chemical Weathering 321
15.3.4 Controls on the Intensity of Chemical Weathering 323
15.3.4.1 Intrinsic Factors 323
15.3.4.2 Extrinsic Factors 325
15.4 Measuring Weathering Rates 327
15.5 Weathering Landforms 329
15.5.1 Weathering Rinds 329
15.5.2 Weathering Pits 330
15.5.3 Cavernous Weathering 330
Chapter 16 Slope Processes and Morphology 333
16.1 Introduction 334
16.2 Slopes Mass Movement 334
16.2.1 What Is Mass Movement? 334
16.2.2 Causes of Mass Movement: Why Does Failure Occur? 335
16.2.2.1 Slope Strength 335
16.2.2.2 Slope Stress 341
16.2.3 Types of Mass Movement 344
16.2.3.1 Soil Creep 346
16.2.3.2 Granular Disintegration, Rockfalls, Toppling Failure, Slab Failures, and Rockslides/ Avalanches 351
16.2.3.3 Soil Falls, Topples, and Slides 358
16.2.3.4 Soil Flows: Debris, Earth, and Mud Flows 360
16.3 Hillslope Hydrology and Slope Processes 363
16.3.1 Rainsplash 364
16.3.2 Overland Flow 366
16.3.3 Subsurface Flow and Piping 368
16.3.4 Ground Water Flow 370
16.4 Slope Morphology and its Evolution 370
16.4.1 Measuring the Slope Morphology 372
16.4.2 Process and Form 372
16.4.3 Controls on Process and Slope Form 376
16.4.3.1 Lithology 376
16.4.3.2 Climate 378
16.4.3.3 Antecedence 379
Chapter 17 Fluvial Processes and Landform-Sediment Assemblages 333
17.1 Introduction 384
17.2 Loose Boundary Hydraulics 384
17.2.1 Types of Flow in Open River Channels 384
17.2.1.1 Laminar Flow 384
17.2.1.2 Turbulent Flow 384
17.2.1.3 What Controls Whether Fluid Flow Is Laminar or Turbulent? 385
17.2.1.4 Types of Turbulent Flow 385
17.3 The Energy of a River and Its Ability to Do Work 387
17.4 Transport of the Sediment Load 387
17.5 Types of Sediment Load 389
17.6 River Hydrology 390
17.6.1 Rainfall-Runoff Responses 390
17.7 The Drainage Basin 392
17.7.1 Origin of Channels and Drainage Basins 393
17.8 Drainage Patterns and their Interpretation 396
17.9 Fluvial Channel Geomorphology 396
17.9.1 River Erosion Processes 398
17.9.2 Morphological Activities of Rivers 398
17.9.2.1 Sand-Bed Rivers 398
17.9.2.2 Flow Regime Concept 403
17.9.3 River Channel Adjustments in Cross-Section 403
17.9.4 River Channel Adjustments: the Long Profile 404
17.9.5 Changes in Base Level 405
17.9.6 Channels in Planform 408
17.9.7 Downstream Size and Sorting Changes 411
17.9.8 Fluvial Landform-Sediment Assemblages 414
17.9.8.1 Meandering River LandformSediment Assemblages 415
17.9.8.2 Fine-Grained Point Bars 416
17.9.8.3 Cutoff 418
17.9.8.4 Natural Levees 418
17.9.8.5 Crevasse Splays 419
17.9.8.6 Flood Basin 419
17.9.8.7 Floodplain Construction 419
17.9.9 Braided River Landform-Sediment Assemblage 422
17.9.9.1 Bar Development 422
17.9.9.2 Causes of Braiding 424
17.9.9.3 The Proglacial Outwash Plain, or Sandur, as an Example of a Braided River System 425
17.9.9.4 Types in Between Meandering and Braided 425
17.9.9.5 Alluvial Fan Sediment-Landform Assemblage as Part of the Fluvial Piedmont 427
17.9.9.6 Morphology 428
17.9.9.7 Fan Area 428
17.9.9.8 Fan Slope 432
17.9.9.9 Processes of Formation 432
17.9.9.10 Summary of the Characteristics of Alluvial Fan Sediments 434
17.9.9.11 Fluvial Landform Characteristics in Rock Channels 434
17.9.9.12 Deltaic Processes and Environments 436
17.9.9.13 Simple Delta Types 436
Chapter 18 Carbonate Sedimentary Environments and Karst Processes and Landforms 383
18.1 Introduction 446
18.2 Carbonate Sedimentary Environments and Carbonate Rock Characteristics 446
18.2.1 Production of Carbonate Material 447
18.2.2 Types of Carbonate Factory 448
18.2.2.1 Tropical Factory 448
18.2.2.2 Cool-Water Carbonate Factory 450
18.2.2.3 Mud-Mound Factory 450
18.2.2.4 Erosion in the Carbonate Factories 450
18.2.3 Growth Potential of Shoal-Water Carbonate Systems 452
18.2.4 Geometry of Shoal-Water Carbonate Accumulations 452
18.2.5 Chemistry and Minerology of Carbonate Rocks 453
18.2.6 Textures of Carbonate Rocks 453
18.2.7 Classification of Carbonate Rocks 454
18.2.8 Carbonate Facies Models and Sedimentary Environments 455
18.2.8.1 Carbonate Sedimentary Environments 455
18.3 Evaporites 464
18.4 Carbonate Facies Models 464
18.4.1 Facies Patterns: From Ramp to Rimmed Platform 466
18.4.2 The Standard Facies Belts 467
18.4.2.1 1(a) Deep Sea 467
18.4.2.2 1(b) Cratonic Deep-Water Basins 468
18.4.2.3 Deep Shelf 468
18.4.2.4 Toe-of-Slope Apron 468
18.4.2.5 Slope 468
18.4.2.6 Reefs of Platform Margin 468
18.4.2.7 Sand Shoals of Platform Margins 468
18.4.2.8 Platform Interior: Normal Marine 468
18.4.2.9 Platform Interior: Restricted 468
18.4.2.10 9(a) Platform Interior: Evaporitic 469
18.4.2.11 9(b) Platform Interior: Brackish 469
18.5 Karst Processes 469
18.5.1 Solution of Carbonates 469
18.5.2 Other Geomorphic Processes Affecting Carbonates 472
18.5.3 Surface Solutional Landforms 472
18.5.3.1 Karren 472
18.5.3.2 Solutional Depressions 476
18.5.3.3 Stream Resurgences and Surface Valleys 478
18.5.3.4 Limestone Pavements 482
18.5.4 Cave Formation Processes and Landforms 482
18.5.4.1 Phreatic Cave Passages 484
18.5.4.2 Vadose Cave Passages 485
18.5.4.3 Factors Influencing Cave Development 487
18.5.4.4 Cave Speleothems 492
18.5.4.5 Fluvial Erosion Landscapes in Karst Areas 495
Chapter 19 Coastal Processes, Landforms, and Sediments 501
19.1 Introduction to the Coastal Zone 502
19.2 Sea Waves, Tides, and Tsunamis 504
19.2.1 Sea Waves and Shore-Normal and Longshore Currents 504
19.3 Tides 510
19.4 Tsunamis 514
19.5 Coastal Landsystems 519
19.5.1 Wave-dominated Coastal Landform Assemblages 520
19.5.1.1 Coastal Slopes, Cliffs and Shore Platforms 520
19.5.1.2 Quarrying 525
19.5.1.3 Abrasion 526
19.5.1.4 Corrosion 526
19.5.1.5 Rock Weathering 526
19.5.1.6 Bioerosion 527
19.5.1.7 Beaches 528
19.5.1.8 Cycles of Variation 530
19.5.1.9 Beaches, Ridges, Spits, Cuspate Forelands, Barriers and Cheniers 532
19.5.1.10 Beach Classification 544
19.5.1.11 Coastal Dune Systems 544
19.5.2 Tide-dominated Coastal Landform Assemblages 546
19.5.2.1 Controls on Estuaries 547
19.5.2.2 Types of Circulation and Estuary Fill 551
19.5.2.3 Mudflats and Saltmarshes 551
19.5.3 River-dominated Coastal Landforms 555
19.5.4 Carbonate Coastal Landforms and Sediments (see Chapter 18 for a more detailed discussion) 556
19.5.4.1 Carbonate Platforms (see Section 18.2.8) 558
19.5.4.2 Carbonate Ramps 561
19.5.4.3 Responses to Sea-Level Change 561
19.6 Distribution of Coastal Land systems 561
19.7 The Impact of Climatic Change on Coastal Landsystems: What Lies in the Future? 564
19.7.1 Introduction 564
19.7.2 Impacts of a Rising Sea Level on Coastal Ecosystems 564
19.7.3 Case Study: the Likely Effects of Climatic Change on the Coastal Geomorphology of the Sefton Coast, South–West Lancashire 566
Chapter 20 Glacial Processes and Land Systems 569
20.1 Introduction 570
20.2 Mass Balance and Glacier Formation 572
20.2.1 How Are Glaciers Formed? 572
20.2.2 How Is Mass Balance Measured? 575
20.2.2.1 Direct Methods 575
20.2.2.2 Photogrammetric Methods 575
20.2.2.3 Hydrological Methods 575
20.2.3 Glacial Meltwater 576
20.2.3.1 Ice Melt 576
20.2.3.2 Iceberg Calving 578
20.2.3.3 Sublimation 579
20.2.3.4 Effects on Mass Balance 579
20.3 Mass Balance and Glacier Flow 580
20.4 Surging Glaciers 582
20.4.1 How Can Surging Glaciers or Glaciers That Have Experienced Surges Be Recognized? 582
20.4.2 Theories to Explain Surging Glaciers 584
20.5 Processes of Glacial Erosion and Deposition 586
20.5.1 Glacial Erosion 586
20.5.2 Sediment Entrained Basally 589
20.5.3 Glacial Sedimentary Environments 590
20.5.3.1 Subglacial Sediments 590
20.5.3.2 Supraglacial Sediments 590
20.5.4 Glaciofluvial Deposition 592
20.5.5 Glacial Lakes 592
20.5.5.1 Deltas 596
20.5.5.2 Lake Plain Deep-Water Silts and Clays 597
20.5.5.3 Formation of De Geer Moraines 599
20.5.6 Glaciomarine Environments 599
20.5.6.1 How Can Glaciomarine Sediments Be Recognized? 599
20.5.6.2 Processes Controlling Glaciomarine Sedimentation 599
20.6 Glacial Landsystems 608
20.6.1 Preservational, Cold-Based Continental Ice Sheets 608
20.6.2 Warm-Based Continental Ice Sheets 609
20.6.2.1 Landscapes of Areal Scouring 609
20.6.2.2 Subglacial Bedforms 609
20.6.2.3 Formation of Eskers 611
20.6.2.4 Formation of Kames 615
20.6.2.5 Moraine Formation 621
20.6.3 Glaciomarine Systems 626
20.6.4 Valley Systems (Glaciers Constrained by Topography) 627
20.6.5 Landforms of Glacial Erosion Associated with Such Systems 630
20.6.6 Surging Glacier Landsystems 632
20.6.7 Glaciovolcanic Landsystems 635
Chapter 21 Periglacial Processes and Landform-Sediment Assemblages 639
21.1 Introduction to the Term ‘Periglacial’ 640
21.2 Permafrost 640
21.3 Periglacial Processes and Landforms 643
21.3.1 Frost Wedging (Frost Shattering or Splitting) 643
21.3.2 Landform–Sediment Assemblages Associated with Frost Wedging 645
21.4 Frost Heaving and Frost Thrusting 646
21.4.1 What Are the Mechanisms of This Heaving? 646
21.5 Landforms Associated with Frost Sorting 648
21.6 Needle Ice Development 649
21.7 Frost Cracking and the Development of Ice Wedges 649
21.8 Growth of Ground Ice and Its Decay, and the Development of Pingos, Thufurs, and Palsas 654
21.8.1 Pingos 654
21.8.2 Thufurs 657
21.8.3 Palsas 659
21.9 Processes Associated with Snowbanks (Nivation Processes) 660
21.9.1 Formation of Protalus Ramparts in Upland Britain 661
21.10 Cryoplanation or Altiplanation Processes and Their Resultant Landforms 662
21.11 The Development of Tors 667
21.12 Slope Processes Associated with the Short Summer Melt Season 672
21.12.1 Landforms Produced by Gelifluction 673
21.12.2 Ploughing Blocks or Boulders 676
21.12.3 Sediments Created by Gelifluction 678
21.13 Cambering and Associated Structures 679
21.14 Wind Action in a Periglacial Climate 679
21.15 Fluvial Processes in a Periglacial Environment 682
21.16 Alluvial Fans in a Periglacial Region 684
21.17 An Overview of the Importance of Periglacial Processes in Shaping the Landscape of Upland Britain 686
21.18 The Periglaciation of Lowland Britain 688
Chapter 22 Aeolian (Wind) Processes and Landform-Sediment Assemblages 689
22.1 Introduction 690
22.2 Current Controls on Wind Systems 691
22.3 Sediment Entrainment and Processes of Sand Movement 691
22.4 Processes of Wind Transport 693
22.4.1 Saltation 694
22.4.2 Rolling and Reptation 695
22.4.3 Suspension 695
22.5 Aeolian Bedforms 695
22.5.1 Ripples 696
22.5.2 Granule Ripples 697
22.5.3 Plane Beds 697
22.5.4 Dunes 697
22.5.4.1 Transverse Dunes 700
22.5.4.2 Barchan Dunes 701
22.5.4.3 Linear Dunes 702
22.5.4.4 Aklé 705
22.5.4.5 Star Dunes 708
22.5.4.6 Zibar 708
22.5.4.7 Dunes Associated with Obstacles 708
22.5.4.8 Lunettes and Clay Dunes 708
22.5.5 Sand Seas, Dune-Fields and Sand Streaks (Sheets) 710
22.6 Dune and Aeolian Sediments 711
22.7 Dust and Loess Deposition 712
22.7.1 Dust 712
22.7.2 Loess 713
22.8 Wind Erosion Landforms 716
22.8.1 Pans, Stone Pavements and Yardangs 716
22.8.2 Ventifacts 716
22.8.3 Yardangs 716
22.8.4 Zeugen 718
22.8.5 Pans 718
22.8.6 Stone or Desert Pavements 718
22.8.7 Wind-Eroded Depressions and Plains 718
Section V The Biosphere 721
Chapter 23 Principles of Ecology and Biogeography 723
23.1 Introduction 724
23.2 Why Do Organisms Live Where They Do? 724
23.3 Components of Ecosystems 728
23.4 Energy Flow in Ecosystems 733
23.5 Food Chains and Webs 738
23.6 Pathways of Mineral Matter (Biogeochemical Cycling) 741
23.6.1 The Carbon Cycle (Figure 23.13) 742
23.6.2 The Nitrogen Cycle (Figure 23.14) 743
23.6.3 The Sulphur Cycle (Figure 23.15) 745
23.6.4 The Phosphorus Cycle (Figure 23.16) 746
23.6.5 The Potassium Cycle (Figure 23.17) 747
23.7 Vegetation Succession and Climaxes 748
23.7.1 Xeroseres 751
23.7.1.1 Lithoseres 751
23.7.1.2 Psammoseres 753
23.7.2 Hydroseres (Including Haloseres) 756
23.7.2.1 Hydroseres 756
23.7.2.2 Haloseres or Salt-marsh Successions 760
23.7.3 Plagioclimax and Subclimax Conditions 763
23.8 Concluding Remarks 766
Chapter 24 Soil-forming Processes and Products 767
24.1 Introduction 768
24.1.1 What Is Soil? 768
24.1.2 Why Is the Study of Soil Important? 768
24.2 Controls on Soil Formation 769
24.2.1 Climate 770
24.2.2 Biota 770
24.2.3 Relief 770
24.2.4 Parent Materials 771
24.2.5 Time 772
24.3 Soils as Systems 772
24.4 Soil Profile Development 773
24.4.1 Nomenclature and Horizons 773
24.4.2 Processes of Translocation (Eluviation) 773
24.4.2.1 Leaching 773
24.4.2.2 Cheluviation 775
24.4.2.3 Clay Translocation or Lessivage 775
24.4.3 Other Soil-Forming Processes 775
24.4.3.1 Gleying 775
24.4.3.2 Calcification 776
24.4.3.3 776
24.4.3.4 Ferrallitization and Ferrugination 776
24.4.3.5 Biological Processes 776
24.5 Soil Properties 778
24.5.1 Soil Texture and Grain Size 778
24.5.1.1 The Atterberg Scale 778
24.5.1.2 United States Department of Agriculture ‘American’ Scale 778
24.5.2 Soil Structure 779
24.5.3 Soil Types Based on Texture and Structure 781
24.5.4 Soil Organic Matter 782
24.5.5 Soil Chemistry 783
24.5.5.1 Colloids and Cation-Exchange Capacity 783
24.5.5.2 784
24.5.5.3 Soil Calcium Carbonate Content 784
24.5.5.4 Soil Nutrients 784
24.5.6 Soil Water 785
24.5.7 Soil Organisms 786
24.6 Key Soil Types, with a Description and Typical Profile 786
24.6.1 Acid Brown Earth 786
24.6.2 Brown Earth 787
24.6.3 Grey Brown Podzolic 787
24.6.4 Podzsol 787
24.6.5 Peaty Gleyed Podzol 787
24.6.6 Gley 788
24.6.7 Organic Soils or Peats 788
24.6.8 Calcareous Soils 788
24.7 Podsolization Theories 790
24.8 Soil Classification 791
24.8.1 The Genetic Method or Dokuchaeiv Approach 792
24.9 Regional and Local Soil Distribution 793
24.9.1 Zonal Soils 793
24.9.1.1 Arctic, Tundra Soils 793
24.9.1.2 Chernozems 795
24.9.1.3 Chestnut-Brown Soils 796
24.9.1.4 Brown and Red Mediterranean Soils 796
24.9.2 Intrazonal Upland Soils in Britain 798
24.9.2.1 Climate 798
24.9.2.2 Parent Material 798
24.9.2.3 Topography or the Relief Factor 799
24.9.2.4 Biotic Factor 799
24.9.2.5 Time Factor 799
24.9.3 The Relationship Between Geology, Vegetation and Soils: an Example from the North-West Pennines 802
24.10 The Development of Dune Soils: An Example from the Sefton Coast 802
24.11 The Development of Woodland Soils in Delamere Forest 804
24.12 Intrazonal Soils Caused by Topographic Change 804
24.13 Palaeosols 805
Chapter 25 World Ecosystems 809
25.1 Introduction 810
25.2 The Tundra Ecozone 812
25.2.1 Climate of the Tundra 813
25.2.2 Tundra Soil System 816
25.2.3 Tundra Ecosystem Structure 816
25.2.4 Tundra Diversity 817
25.2.5 Tundra Plant Communities 818
25.2.6 Conclusion 819
25.3 The Tropical (Equatorial) Rain Forest, or Humid Tropics Sensu Stricto, Ecozone 820
25.3.1 Climate of the Humid Tropics 822
25.3.2 Weathering Regime 822
25.3.3 The Tropical Rain Forest 823
25.3.3.1 Structural Organization 823
25.3.3.2 Functional Organization 825
25.3.3.3 Animal Life 826
25.3.3.4 Soils 826
25.3.3.5 Tropical Rain Forest Vulnerability 827
25.4 The Seasonal Tropics or Savanna Ecozone 827
25.4.1 Climate of the Seasonal Tropics 827
25.4.2 Weathering Regime 830
25.4.3 Soils 830
25.4.4 Vegetation Characteristics 831
25.4.5 Animals 832
25.4.6 Savanna Fires 833
25.4.7 Savanna Ecosystems 833
25.5 Potential Effects of Global Warming on the World’s Ecozones 834
Section VI Global Environmental Change 841
Chapter 26 The Earth as a Planet: Geological Evolution and Change 843
26.1 Introduction 844
26.2 How Unique Is the Earth as a Planet? 844
26.3 What Do We Really Know About the Early Earth? 845
26.4 The Early Geological Record 845
26.4.1 Archaean Greenstone Belts 846
26.4.2 Late Archaean Sedimentary Basins 847
26.4.3 Archaean Granite-Gneiss Terranes 849
26.4.4 Where Are the Oldest Rocks on Earth? 849
26.5 The First Earth System 849
26.6 How Did the Earth’s Core Form? 851
26.6.1 Was there Really a Molten Magma Ocean? 852
26.7 Evolution of the Earth’s Mantle 852
26.7.1 What Do We Know About the Mantle? 852
26.7.2 Can we See Mantle Rocks on the Earth’s Surface? 853
26.7.3 Mantle Melting and Mantle Convection 855
26.7.4 Mantle Plumes 856
26.7.5 The Mantle Geochemical System 859
26.7.6 What Was the Earth’s Earliest Mantle like? 860
26.7.7 Models for the Evolution of the Mantle 860
26.8 Evolution of the Continental Crust 861
26.8.1 Crustal Growth at Destructive Plate Boundaries 861
Chapter 27 Atmospheric Evolution and Climate Change 865
27.1 Evolution of Earth’s Atmosphere 866
27.1.1 The Rise of Atmospheric Oxygen 866
27.1.2 Formation of Supercontinents 866
27.2 Future Climate Change 867
27.2.1 Predictions, Scenarios, and Projections 868
27.2.2 Climate Models 868
27.2.3 Principal Findings of the IPCC AR5 868
27.2.3.1 Models 869
27.2.3.2 Projections 869
27.2.4 Impacts and Implications of Global Warming 872
27.2.5 Mitigating Human-Induced Global Warming 876
27.2.5.1 Save Energy at Home 876
27.2.5.2 Get Around on Less 876
27.2.5.3 Consume Less and Conserve More 876
27.2.5.4 Be a Catalyst for Change 876
Chapter 28 Future Change in Ocean Circulation and the Hydrosphere 877
28.1 Introduction 878
28.2 Sea Level Change and the Supercontinental Cycle 878
28.2.1 The Supercontinent Cycle 878
28.2.2 The Supercontinent Cycle and Its Relationship with Climate 880
28.2.3 Global Temperature, Ice Ages and Sea-Level Change 880
28.3 Projected Long-Term Changes in the Ocean 883
28.4 Future Changes in the Water Cycle 884
Chapter 29 Biosphere Evolution and Change 889
29.1 Introduction 890
29.2 Mechanisms of Evolution in the Fossil Record 890
29.3 The Origins of Life 894
29.4 An Outline History of the Earth’s Biospheric Evolution 896
29.4.1 Earliest Life in the Fossil Record 900
29.4.2 Eukaryotes and the Diversification of Life 901
29.4.3 Evolving Metazoans and the Ediacaran Fauna 904
29.4.4 The Cambrian Explosion of Life 905
29.4.5 Colonization of the Land 908
29.4.6 Reptilian Radiation 911
29.4.7 Dinosaurs and Their Predecessors 912
29.4.7.1 Introduction 912
29.4.7.2 Dinosaur Ecology and Ethology 913
29.4.7.3 Evolution of Birds 915
29.4.7.4 How Did Powered Flight Evolve in Birds? 916
29.4.8 The Origin of Mammals 918
29.5 Mass Extinctions and Catastrophes in the History of Life on Earth 921
29.5.1 Extinction in the Late Ordovician Period 923
29.5.2 Extinction in the Late Devonian Period 923
29.5.3 Extinction in the Permo-Triassic Period 923
29.5.4 Extinctions at the End-Triassic Period 925
29.5.5 Extinctions at the Cretaceous–Tertiary Boundary 925
29.5.6 End-Pleistocene Extinctions: Humans or Environmental Change? 930
Chapter 30 Environmental Change: Greenhouse and Icehouse Earth Phases and Climates Prior to Recent Changes 933
30.1 Introduction 934
30.2 Early Glaciations in the Proterozoic Phase of the Pre-Cambrian (the Snowball Earth Hypothesis) 934
30.2.1 Introduction: The Evidence for a Snowball Earth 934
30.2.2 What Could Initiate Snowball Earth? 936
30.2.3 What Could Cause a Break from Global Glaciation and the End of a Snowball Earth? 937
30.2.4 Arguments for Snowball Earth 938
30.2.5 Arguments Against Snowball Earth 940
30.2.6 How Did Life Survive Snowball Earths? 941
30.3 Examples of Changes from Greenhouse to Icehouse Climates in the Earth’s Past 942
30.3.1 Links Between Surface Temperatures and CO2 Concentrations During the Palaeozoic Era 942
30.3.2 A Greenhouse Climate in the Middle and Late Cretaceous 943
30.3.3 The Palaeocene Supergreenhouse and the Changes in the Eocene 948
30.3.4 Oligocene Antarctic Glaciation and its Potential Impacts Globally (the First Major Glaciation of the Cenozoic) 953
30.3.5 Has the Antarctic Ice Sheet Always Been Stable? 955
30.3.6 What Evidence Is There in the Arctic Ocean for Cenozoic Climate Change? 955
30.3.7 Summary 956
30.4 Late Cenozoic Ice Ages: Rapid Climate Change in the Quaternary 956
30.4.1 Introduction 956
30.4.2 Evidence for Rapid Quaternary Climate Change 957
30.4.2.1 Oxygen-Isotope Record in the Ocean Basins 957
30.4.2.2 Ice-Core Isotopic Record 958
30.4.2.3 Composition of Air in Ice Bubbles 958
30.4.3 Positive and Negative Feedbacks in Glacial Periods 958
30.4.4 Processes Which Mitigate Glacial Periods 959
30.4.5 Causes of Ice Ages 959
30.4.5.1 Changes in the Earth’s Atmosphere 959
30.4.5.2 The Position of the Continents 961
30.4.5.3 Variations in the Earth’s Orbit (Milankovitch Cycles) 962
30.4.5.4 Eccentricity 962
30.4.5.5 Obliquity or Axial Tilt 963
30.4.5.6 Precession of the Equinoxes 963
30.4.5.7 Summary 965
30.4.5.8 What Does the Milankovitch Hypothesis Say About Future Climate Change? 965
30.4.6 Variations in the Sun’s Energy Output 965
30.4.7 Volcanism 966
30.5 Late Glacial Climates and Evidence for Rapid Change 966
30.5.1 Introduction 966
30.5.2 Classic Divisions of the Late Glacial 967
30.5.3 What Was Happening in Western Britain During the Late Glacial? 970
30.5.4 The Older Dryas and Its Vegetation 972
30.5.4.1 Description of the Vegetation 973
30.5.5 The Younger Dryas 973
30.5.6 The Younger Dryas (PZIII) Cold Phase in the British Uplands 974
30.5.7 Why Did the Younger Dryas Take Place? 975
30.5.8 Is There Evidence That the Younger Dryas Was a Global Event? 976
30.5.9 What Happened at the End of the Younger Dryas? 976
30.6 The Medieval Warm Period (MWP) or Medieval Climate Optimum and the LIA 976
30.6.1 Introduction 976
30.6.2 North Atlantic and North American Regions 979
30.6.3 Other Regions on Earth 980
30.6.4 The Little Ice Age 980
30.6.4.1 Introduction 980
30.6.4.2 Dating of the LIA 980
30.6.4.3 The LIA in the Northern Hemisphere 981
30.6.4.4 Impact on Agriculture 981
30.6.4.5 Impact on Wine Production 982
30.6.4.6 The Extent of Glaciers and Evidence for Cold Conditions 982
30.6.4.7 Depictions of Winter in European Painting 982
30.6.4.8 The LIA in the Southern Hemisphere 983
30.6.4.9 Climatic Patterns and Their Causes 984
30.6.4.10 Solar Activity 984
30.6.4.11 Volcanic Activity 984
30.6.4.12 The End of the LIA 984
Chapter 31 Global Environmental Change in the Future 985
31.1 Introduction 986
31.2 Future Climate Change 986
31.3 Change in the Geosphere 989
31.4 Change in the Oceans and Hydrosphere 992
31.4.1 Sea-Level Change 992
31.4.2 Change in Ocean Circulation Systems 993
31.5 Change in the Biosphere 993
31.6 A Timeline for Future Earth 994
31.7 Causes for Future Optimism? 995
31.7.1 Approaching the Point of no Return 995
31.7.2 Renewable Technologies 996
31.7.3 Peak Oil and Coal Production 998
31.7.4 Contraction and Convergence: The Last Hope? 998
31.8 Concluding Remarks 999
Index 1001
EULA 1009

Erscheint lt. Verlag 1.11.2019
Sprache englisch
Themenwelt Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Geowissenschaften Allgemeines / Lexika
Naturwissenschaften Geowissenschaften Geografie / Kartografie
Naturwissenschaften Geowissenschaften Geologie
Technik
Schlagworte Atmosphere • atmospheric systems • biogeography • biosphere • changes in Earth environment • Climate Change Effects • Earth environments • earth processes • earth sciences • Ecology • Environmental Geoscience • Environmental Science • Environmental Studies • environment change • Geographie • Geography • geosciences • Geowissenschaften • guide to Earth environments • Hydrosphere • Lithosphere • <i>Earth Environments: Past, Present and Future, Second Edition</i></p> • <p>environmental sciences • Natural Hazards • Oceanography • physical geography • surface and internal geological systems • The Environment • The Living Environment • Umweltforschung • Umweltgeowissenschaften • Umweltwissenschaften
ISBN-10 1-119-41326-5 / 1119413265
ISBN-13 978-1-119-41326-4 / 9781119413264
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich