Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Brain Network Analysis

(Autor)

Buch | Hardcover
338 Seiten
2019
Cambridge University Press (Verlag)
9781107184862 (ISBN)
CHF 127,40 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This tutorial reference provides a coherent overview of statistical and mathematical approaches used in brain network analysis. It goes beyond graph theory to explore different models in network science, regression, and algebraic topology, empowering methodological understanding in a manner immediately usable to both researchers and students.
This tutorial reference serves as a coherent overview of various statistical and mathematical approaches used in brain network analysis, where modeling the complex structures and functions of the human brain often poses many unique computational and statistical challenges. This book fills a gap as a textbook for graduate students while simultaneously articulating important and technically challenging topics. Whereas most available books are graph theory-centric, this text introduces techniques arising from graph theory and expands to include other different models in its discussion on network science, regression, and algebraic topology. Links are included to the sample data and codes used in generating the book's results and figures, helping to empower methodological understanding in a manner immediately usable to both researchers and students.

Moo K. Chung is an Associate Professor in the Department of Biostatistics and Medical Informatics at the University of Wisconsin, Madison and is also affiliated with the Department of Statistics and Waisman Laboratory for Brain Imaging and Behavior. He has received the Vilas Associate Award for his research in applied topology to medical imaging, the Editor's Award for best paper published in the Journal of Speech, Language, and Hearing Research for a paper that analyzed CT images, and a National Institutes of Health (NIH) Brain Initiative Award for work on persistent homological brain network analysis. He has written numerous papers in computational neuroimaging and two previous books on computation on brain image analysis.

1. Statistical preliminary; 2. Brain network nodes and edges; 3. Graph theory; 4. Correlation networks; 5. Big brain network data; 6. Network simulations; 7. Persistent homology; 8. Diffusion on graphs; 9. Sparse networks; 10. Brain network distances; 11. Combinatorial inference for networks; 12. Series expansion of connectivity matrices; 13. Dynamic network models.

Erscheinungsdatum
Zusatzinfo Worked examples or Exercises; 41 Line drawings, color
Verlagsort Cambridge
Sprache englisch
Maße 156 x 235 mm
Gewicht 640 g
Themenwelt Geisteswissenschaften Psychologie Biopsychologie / Neurowissenschaften
Mathematik / Informatik Mathematik
Medizin / Pharmazie Medizinische Fachgebiete Psychiatrie / Psychotherapie
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zoologie
ISBN-13 9781107184862 / 9781107184862
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Psychiatrie als angewandte klinische Neurowissenschaft

von Dieter F. Braus

Buch (2025)
Thieme (Verlag)
CHF 76,95