Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Spatial Regression Models for the Social Sciences

, (Autoren)

Buch | Hardcover
272 Seiten
2019
SAGE Publications Inc (Verlag)
9781544302072 (ISBN)
CHF 146,60 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Focusing on the methods that are commonly used by social scientists, this text introduces the regression methods for analysing spatial data.
Spatial Regression Models for the Social Sciences shows researchers and students how to work with spatial data without the need for advanced mathematical statistics. Focusing on the methods that are commonly used by social scientists, Guangqing Chi and Jun Zhu explain what each method is and when and how to apply it by connecting it to social science research topics. Throughout the book they use the same social science example to demonstrate applications of each method and what the results can tell us. 

Dr. Guangqing Chi is Associate Professor of Rural Sociology and Demography with courtesy appointments in Department of Sociology and Criminology and Department of Public Health Sciences at The Pennsylvania State University. He also serves as Director of the Computational and Spatial Analysis Core of the Social Science Research Institute and Population Research Institute. Dr. Chi is an environmental demographer. His research examines the interactions between population change and the built and natural environments. He pursues his research program within interwoven research projects on climate change, land use, and community resilience, with an emphasis on environmental migration and critical infrastructure/transportation and population change within the smart cities framework. Most recently, Dr. Chi has applied his expertise in big data to study issues of generalizability and reproducibility of Twitter data for population and social science research. He also studies environmental migration, including projects on coupled migrant-pasture systems in Central Asia, permafrost erosion and coastal communities, and ecological migration in China. Dr. Chi′s research has been supported through grants from national and state agencies, including the National Science Foundation, National Institutes of Health, National Aeronautics and Space Administration, and U.S. Department of Transportation. He has published about 50 articles in peer-reviewed journals. His research on gasoline prices and traffic safety has been highlighted more than 2,000 times by various news media outlets, such as National Public Radio and Huffington Post. Dr. Jun Zhu is Professor of Statistics at the University of Wisconsin–Madison. She is a faculty member in the Department of Statistics and the Department of Entomology, as well as a faculty affiliate with the Center for Demography and Ecology and the Department of Biostatistics and Medical Informatics. The main components of her research activities are statistical methodological research and scientific collaborative research. Her statistical methodological research concerns developing statistical methodology for analyzing spatially referenced data (spatial statistics) and spatial data repeatedly sampled over time (spatio-temporal statistics) that arise often in the biological, physical, and social sciences. Her collaborative research concerns applying modern statistical methods, especially spatial and spatio-temporal statistics, to studies of agricultural, biological, ecological, environmental, and social systems conducted by research scientists. Dr. Zhu’s methodological and collaborative research projects have been supported by the Environmental Protection Agency, National Institutes of Health, National Science Foundation, U.S. Department of Agriculture, U.S. Department of Defense, and U.S. Geographical Society.  She is a Fellow of the American Statistical Association and a recipient of the Distinguished Achievement Medal in its Section of Statistics and the Environment.

Series Editor’s Introduction
Preface
Acknowledgments
About the Authors
Chapter 1: Introduction
Learning Objectives
1.1 Spatial Thinking in the Social Sciences
1.2 Introduction to Spatial Effects
1.3 Introduction to the Data Example
1.4 Structure of the Book
Study Questions
Chapter 2: Exploratory Spatial Data Analysis
Learning Objectives
2.1 Exploratory Data Analysis
2.2 Neighborhood Structure and Spatial Weight Matrix
2.3 Spatial Autocorrelation, Dependence, and Heterogeneity
2.4 Exploratory Spatial Data Analysis
Study Questions
Chapter 3: Models Dealing With Spatial Dependence
Learning Objectives
3.1 Standard Linear Regression and Diagnostics for Spatial Dependence
3.2 Spatial Lag Models
3.3 Spatial Error Models
Study Questions
Chapter 4: Advanced Models Dealing With Spatial Dependence
Learning Objectives
4.1 Spatial Error Models With Spatially Lagged Responses
4.2 Spatial Cross-Regressive Models
4.3 Multilevel Linear Regression
Study Questions
Chapter 5: Models Dealing With Spatial Heterogeneity
Learning Objectives
5.1 Aspatial Regression Methods
5.2 Spatial Regime Models
5.3 Geographically Weighted Regression
Study Questions
Chapter 6: Models Dealing With Both Spatial Dependence and Spatial Heterogeneity
Learning Objectives
6.1 Spatial Regime Lag Models
6.2 Spatial Regime Error Models
6.3 Spatial Regime Error and Lag Models
6.4 Model Fitting
6.5 Data Example
Study Questions
Chapter 7: Advanced Spatial Regression Models
Learning Objectives
7.1 Spatio-temporal Regression Models
7.2 Spatial Regression Forecasting Models
7.3 Geographically Weighted Regression for Forecasting
Study Questions
Chapter 8: Practical Considerations for Spatial Data Analysis
Learning Objectives
8.1 Data Example of U.S. Poverty in R
8.2 General Procedure for Spatial Social Data Analysis
Study Questions
Appendix A: Spatial Data Sources
Appendix B: Results Using Forty Spatial Weight Matrices available on the website at study.sagepub.com/researchmethods/quantitative-statistical-research/chi
Glossary
References
Index

Erscheinungsdatum
Reihe/Serie Advanced Quantitative Techniques in the Social Sciences
Verlagsort Thousand Oaks
Sprache englisch
Maße 177 x 254 mm
Gewicht 760 g
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Geowissenschaften Geografie / Kartografie
Sozialwissenschaften Soziologie Allgemeines / Lexika
Sozialwissenschaften Soziologie Empirische Sozialforschung
ISBN-13 9781544302072 / 9781544302072
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Zahlen, Fakten und Geschichten : in über 1000 Infografiken, Karten …

von Spiegel Stefan; Tobias Weber; Björn Köcher

Buch | Hardcover (2025)
Marmota Maps (Verlag)
CHF 55,90
Sammlung vermessungstechnischer Aufgaben mit ausführlichen Lösungen

von André Sieland

Buch | Softcover (2025)
Wichmann, H (Verlag)
CHF 37,80