Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Science of Synthesis: Knowledge Updates 2018 Vol. 3 (eBook)

eBook Download: PDF
2018 | 1. Auflage
Thieme (Verlag)
9783132423220 (ISBN)

Lese- und Medienproben

Science of Synthesis: Knowledge Updates 2018 Vol. 3 -
Systemvoraussetzungen
2.999,99 inkl. MwSt
(CHF 2929,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
<p>The Science of Synthesis Editorial Board, together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in <cite>Science of Synthesis</cite> and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.</p>

Science of Synthesis: Knowledge Updates 2018/3 1
Title Page 7
Copyright 8
Preface 9
Abstracts 11
Overview 17
Table of Contents 19
10.2 Product Class 2: Benzo[c]furan and Its Derivatives 35
10.2.1 Product Subclass 1: Benzo[c]furans 35
10.2.1.1 Synthesis by Ring-Closure Reactions 46
10.2.1.1.1 Annulation to an Arene 46
10.2.1.1.1.1 Formation of One O—C and One C—C Bond 46
10.2.1.1.1.1.1 Method 1: From Aromatic Ketimines and Aldehydes by Rhenium Catalysis 46
10.2.1.1.1.1.1.1 Variation 1: From Ketimines and Benzyl Alcohol 48
10.2.1.1.1.2 Formation of One O—C Bond 49
10.2.1.1.1.2.1 Method 1: From 2-Alkynylbenzyl Alcohols or Their Derivatives 49
10.2.1.1.1.2.1.1 Variation 1: From 2-Alkynylbenzyl Alcohols Using a Palladium Catalyst 49
10.2.1.1.1.2.1.2 Variation 2: From 2-Alkynylbenzyl Alcohols or O-Silylated Derivatives and an Aryl Iodide Using a Palladium Catalyst 51
10.2.1.1.1.2.1.3 Variation 3: From 2-Ethynylbenzyl Alcohols via Carbocyclization with Aryl Iodides and Carbon Monoxide Using a Palladium Catalyst under Basic Conditions 53
10.2.1.1.1.2.2 Method 2: From (2-Alkynylaryl)aldehydes and Ketones and Fischer Carbene Complexes 55
10.2.1.1.1.2.2.1 Variation 1: From (2-Alkynylaryl)aldehydes or 2-Alkynylaryl Ketones and Fischer Carbene Complexes 55
10.2.1.1.1.2.2.2 Variation 2: From 2-Alkynylaldehydes and Chromium–Dicyanocarbene Complexes 58
10.2.1.1.1.2.2.3 Variation 3: From 2-Enynylbenzaldehydes and a Chromium–Carbene Complex 59
10.2.1.1.1.2.2.4 Variation 4: From 2-Ethynyl-N,N-dimethylbenzamide and a Fischer Carbene Complex 60
10.2.1.1.1.2.3 Method 3: From 2-Ethynylbenzoyl–Rhenium Complexes 61
10.2.1.1.1.2.4 Method 4: From 2-Alkynylbenzaldehydes by Palladium-Catalyzed Cycloreduction 63
10.2.1.1.1.2.5 Method 5: From Bis(2-aroylphenyl)acetylenes by Photochemical Exocyclic [2 + 2 + 2] Cycloaddition 64
10.2.1.1.1.2.6 Method 6: From 2-Alkenylbenzaldehydes 65
10.2.1.1.1.2.7 Method 7: From Acetals of 2-(Hydroxymethyl)benzaldehydes 66
10.2.1.1.1.2.8 Method 8: From 2-Acylbenzyl Alcohols 67
10.2.1.1.1.2.9 Method 9: From 1,2-Diacylbenzenes 69
10.2.1.1.1.2.9.1 Variation 1: Reduction with Borohydrides 69
10.2.1.1.1.2.9.2 Variation 2: Reduction with Dissolving Metals 70
10.2.1.1.1.2.9.3 Variation 3: From Phthalaldehyde and Trialkyl Phosphites Promoted by Lewis Acids 72
10.2.1.1.1.2.9.4 Variation 4: From Phthalaldehyde and Triethylsilane with a Scandium Catalyst 74
10.2.1.1.1.2.9.5 Variation 5: From 2-Aroylbenzaldehydes with Arylmagnesium Reagents 75
10.2.1.1.1.2.9.6 Variation 6: From 2-Benzoylbenzaldehyde with Arylboronic Acids Using Palladium or Rhodium Catalysts 76
10.2.1.1.1.2.9.7 Variation 7: From 2-Benzoylbenzaldehydes and Trimethylsilyl Cyanide 78
10.2.1.1.1.2.9.8 Variation 8: From 2-Acylbenzaldehydes and Potassium Cyanide 79
10.2.1.1.1.2.9.9 Variation 9: From 2-(Alkynylacyl)benzaldehydes 80
10.2.1.1.1.2.10 Method 10: From 2-Acylbenzyl Sulfoxides 81
10.2.1.1.1.2.10.1 Variation 1: From 2-Acylbenzyl Sulfoxides via Pummerer Reaction 81
10.2.1.1.1.2.10.2 Variation 2: From 2-Carbamoylbenzyl Sulfoxides via Pummerer Reaction 82
10.2.1.1.1.2.11 Method 11: From Methyl 2-Formylbenzoates 84
10.2.1.1.1.2.12 Method 12: From Derivatives of 2-(Diazomethyl)benzoic Acid 86
10.2.1.1.1.2.12.1 Variation 1: From Alkyl 2-(Diazomethyl)benzoates 86
10.2.1.1.1.2.12.2 Variation 2: From a 2-(Diazomethyl)benzamide 88
10.2.1.1.1.2.12.3 Variation 3: From 2-(Diazomethyl)benzamides and Intramolecular Diels–Alder Cycloaddition Reactions 88
10.2.1.1.1.2.13 Method 13: From 2-(Halomethyl)benzamides 90
10.2.1.1.2 Annulation to a Furan Ring 90
10.2.1.1.2.1 Method 1: From Furan-3,4-dicarbaldehydes via Addition to Conjugated Alkenes 91
10.2.1.1.2.2 Method 2: From Furan-3,4-dicarbaldehydes via Aldol Condensations 93
10.2.1.1.2.3 Method 3: From Dimethyl Furan-3,4-dicarboxylate via Claisen Condensation 93
10.2.1.2 Synthesis by Ring Transformation 94
10.2.1.2.1 Method 1: Retro-Diels–Alder Reactions 94
10.2.1.2.1.1 Variation 1: Flash-Vacuum Pyrolysis of 1,2,3,4-Tetrahydro-1,4-epoxynaphthalenes 94
10.2.1.2.1.2 Variation 2: Thermal Decomposition of Pyranone or Cyclopentadienone Adducts with 1,4-Dihydro-1,4-epoxynaphthalene 95
10.2.1.2.1.3 Variation 3: From Benzyne/Oxazole Cycloadducts 96
10.2.1.2.1.4 Variation 4: From 1,4-Dihydro-1,4-epoxynaphthalene/3,6-Di-(pyridin-2-yl)-1,2,4,5-tetrazine Adducts 98
10.2.1.2.1.5 Variation 5: Ring-Selective Generation of Benzo[c]furans from Unsymmetrically Substituted Diepoxyanthracenes 101
10.2.1.2.1.6 Variation 6: From Benzobisoxadisiloles or Benzotrisoxadisiloles 102
10.2.1.2.2 Method 2: From 3,4-Dihydro-1H-benzo[d][1,2]oxazines via Hemiaminals 103
10.2.1.2.3 Method 3: From Indenone Derivatives 106
10.2.1.2.4 Method 4: Transformation of a 2H-Indene Ring 107
10.2.1.3 Aromatization 108
10.2.1.3.1 Method 1: From 3a,7a-Dihydrobenzo[c]furan-1,3-diones 108
10.2.1.3.2 Method 2: From 5,6-Dihydrobenzo[c]furan-4,7-diones 109
10.2.1.3.3 Method 3: From Benzo[c]furan-1(3H)-ones by Deprotonation 110
10.2.1.3.3.1 Variation 1: From Benzo[c]furan-1(3H)-ones by Deprotonation and Silylation 112
10.2.1.3.4 Method 4: From Benzo[c]furan-1(3H)-ones by Reduction/Elimination 115
10.2.1.3.5 Method 5: From Benzo[c]furan-1(3H)-ones and Grignard Reagents 116
10.2.1.3.6 Method 6: From Benzo[c]furan-1(3H)-ones and Organolithium Reagents 121
10.2.1.3.7 Method 7: From 1,3-Dihydrobenzo[c]furan-1-ols 122
10.2.1.3.7.1 Variation 1: Acid-Catalyzed Dehydration of 1,3-Dihydrobenzo[c]furan-1-ols 123
10.2.1.3.7.2 Variation 2: From a Silylated Hemiacetal with Metal Fluorides 128
10.2.1.3.7.3 Variation 3: Dehydration by Thermolysis 129
10.2.1.3.8 Method 8: From 1-Alkoxy-1,3-dihydrobenzo[c]furans 130
10.2.1.3.8.1 Variation 1: Via Base-Promoted 1,4-Elimination 130
10.2.1.3.8.2 Variation 2: Via Acid-Catalyzed 1,4-Elimination 134
10.2.1.3.8.3 Variation 3: Via Palladium-Catalyzed Reaction under Neutral Conditions 138
10.2.1.3.9 Method 9: From 1,1-Dimethoxy-1,3-dihydrobenzo[c]furan 138
10.2.1.3.10 Method 10: From 1,3-Dihydrobenzo[c]furan-1-amines 140
10.2.1.3.11 Method 11: From 1-Alkylidene-1,3-dihydrobenzo[c]furans 141
10.2.1.3.12 Method 12: By Aromatization of the Benzene Ring 144
10.2.1.3.12.1 Variation 1: By Dehydrogenation of Partially Hydrogenated Areno[c]furans 144
10.2.1.3.12.2 Variation 2: From a 5,6-Dibromo-4,5,6,7-tetrahydrobenzo[c]furan by Dehydrobromination 145
10.2.1.3.12.3 Variation 3: By Dehydration of the Partially Reduced Arene Ring of Hydroxyareno[c]furans 146
10.2.1.3.12.4 Variation 4: From 6,7-Dihydrobenzo[c]furan-4(5H)-ones by Dehydrogenation 148
10.2.1.3.12.5 Variation 5: From Benzo[c]furan-4,7-diones by Reduction 149
10.2.1.3.13 Method 13: From 4,5-Diaroylcyclohexenes 149
10.2.1.3.14 Method 14: From 1,2-Diaroylcyclohexadienes 151
10.2.1.4 Synthesis by Substituent Modification 151
10.2.1.4.1 Method 1: Giving Benzo[c]furans Substituted on the Furan Ring 151
10.2.2 Product Subclass 2: Benzo[c]furan-1(3H)-ones 156
10.2.2.1 Synthesis by Ring-Closure Reactions: Annulation to an Arene 161
10.2.2.1.1 By Formation of One O—C and One C—C Bond 161
10.2.2.1.1.1 With Formation of 1—2 and 1—7a Bonds 161
10.2.2.1.1.1.1 Method 1: From Benzyl Alcohols via Lithiation/Carbonylation 161
10.2.2.1.1.1.2 Method 2: From Benzyl Alcohols via Thallation/Carbonylation 161
10.2.2.1.1.1.3 Method 3: From 2-Halo- or 2-[(Trifluoromethylsulfonyl)oxy]benzyl Alcohols via Carbonylation 162
10.2.2.1.1.1.3.1 Variation 1: With Use of a Palladium Catalyst and Carbon Monoxide 162
10.2.2.1.1.1.3.2 Variation 2: Via Cyanation with Use of Copper Catalysis 164
10.2.2.1.1.1.3.3 Variation 3: Via Palladium Catalysis Using Paraformaldehyde as Carbonyl Group Source 165
10.2.2.1.1.1.3.4 Variation 4: Via Palladium-Catalyzed Carbonylation of 2-Halobenzyl Alcohols Using 2-Phenyloxirane as Carbonyl Group Source 166
10.2.2.1.1.1.3.5 Variation 5: Via Palladium Catalysis Using a Cobalt–Carbonyl Complex 167
10.2.2.1.1.1.3.6 Variation 6: Via Palladium Catalysis Using Phenyl Formate as Carbonyl Group Source 168
10.2.2.1.1.2 With Formation of 2—3 and 3—3a Bonds 168
10.2.2.1.1.2.1 Method 1: From Benzoic Acids via Palladium-Catalyzed Alkylation with Alkyl Halides 168
10.2.2.1.1.2.2 Method 2: From Benzoic Acids via Ruthenium-Catalyzed C—H Bond Alkenylation 169
10.2.2.1.1.2.3 Method 3: From 2-Iodobenzoic Acid and Alkynes 171
10.2.2.1.1.3 With Formation of 1—2 and 3—3a Bonds 172
10.2.2.1.1.3.1 Method 1: From Palladium-Catalyzed Hydroxymethylation of Arylboronic Acids Using Aqueous Formaldehyde 172
10.2.2.1.1.3.2 Method 2: From 2-Iodobenzoates via Cobalt-Catalyzed Reaction with Aldehydes 173
10.2.2.1.1.3.3 Method 3: From 2-Halobenzoic Acid Derivatives Using [Diisopropoxy(methyl)silyl]methyl Grignard Reagent as Hydroxymethylating Agent 175
10.2.2.1.2 By Formation of One O—C Bond 176
10.2.2.1.2.1 With Formation of the 1—2 Bond 176
10.2.2.1.2.1.1 Method 1: From (2-Vinylphenyl)methanol 176
10.2.2.1.2.1.2 Method 2: By Oxidation of 1,2-Bis(hydroxymethyl)benzenes 176
10.2.2.1.2.1.2.1 Variation 1: Using Tungstic Acid as Catalyst 177
10.2.2.1.2.1.2.2 Variation 2: Using an Iridium Complex as Catalyst 177
10.2.2.1.2.1.2.3 Variation 3: Using Pyridinium Chlorochromate as Catalyst 178
10.2.2.1.2.1.2.4 Variation 4: Via Copper/Nitroxyl Catalysis 179
10.2.2.1.2.1.2.5 Variation 5: Using 2-Iodo-3,4,5,6-tetramethylbenzoic Acid and Oxone 180
10.2.2.1.2.1.2.6 Variation 6: Iron-Catalyzed Aerobic Oxidation Using Molecular Oxygen or Air 182
10.2.2.1.2.1.3 Method 3: From Arene-1,2-dicarbaldehydes or 2-Acylbenzaldehydes 183
10.2.2.1.2.1.3.1 Variation 1: By Disproportionation Using a Ruthenium Hydride Complex 183
10.2.2.1.2.1.3.2 Variation 2: By Disproportionation with 3-(2-Oxoalkylation) Using a Ruthenium Hydride Complex 185
10.2.2.1.2.1.3.3 Variation 3: By Disproportionation Using a Rhodium Complex 186
10.2.2.1.2.1.3.4 Variation 4: By Rhodium/Copper Catalyzed Oxidative Cyclization with 3-Alkoxylation 188
10.2.2.1.2.1.3.5 Variation 5: By Rhodium/Copper Catalyzed Oxidative Cyclization with 3-(1,3-Dioxoalkylation) 189
10.2.2.1.2.1.3.6 Variation 6: By Palladium- or Rhodium-Catalyzed Reaction with Organoboronic Acids with 3-Arylation 190
10.2.2.1.2.1.3.7 Variation 7: By Cobalt-Catalyzed Reaction with Arylboronic Acids with 3-Arylation 192
10.2.2.1.2.1.3.8 Variation 8: By Disproportionation Using Sodium Cyanide or UV Irradiation 193
10.2.2.1.2.1.4 Method 4: From 2-Formyl- or 2-Aroylbenzoic Acids 196
10.2.2.1.2.1.4.1 Variation 1: By Reaction with Acetophenones under Solid Acid Catalysis and Microwave Irradiation 196
10.2.2.1.2.1.4.2 Variation 2: By Reaction with 1,3-Dicarbonyl Compounds under Solid Acid Catalysis and Heating 200
10.2.2.1.2.1.4.3 Variation 3: With Introduction of a Heterocycle at the C3 Position 201
10.2.2.1.2.1.5 Method 5: From Alkyl 2-Formylbenzoates by Palladium-Catalyzed Reaction with Organoboronic Acids 202
10.2.2.1.2.1.6 Method 6: From Alkyl 2-Formylbenzoates by Palladium-Catalyzed Asymmetric Reaction with Organoboronic Acids 204
10.2.2.1.2.1.7 Method 7: By Partial Reduction of Esters of Phthalic Acids (Alkyl Phthalates) 206
10.2.2.1.2.1.8 Method 8: From 2-Formylbenzonitriles by Reaction with a Nucleophile 207
10.2.2.1.2.2 With Formation of the 2—3 Bond 210
10.2.2.1.2.2.1 Method 1: From 2-Alkylbenzoic Acids by Intramolecular Aryloxylation of C(sp3)—H Bonds 210
10.2.2.1.2.2.1.1 Variation 1: By Platinum Catalysis 210
10.2.2.1.2.2.1.2 Variation 2: By Selenium-Catalysis 211
10.2.2.1.2.2.1.3 Variation 3: Using Organohypervalent Iodine(III)/Molecular Iodine Reagents with Irradiation 213
10.2.2.1.2.2.1.4 Variation 4: Using Hypervalent Iodine(III)/Potassium Bromide Reagents 216
10.2.2.1.2.2.1.5 Variation 5: Using Sodium Bromate and Sodium Hydrogen Sulfite 218
10.2.2.1.2.2.2 Method 2: From Functionalized Alkyl 2-Alkylbenzoates 218
10.2.2.1.2.2.2.1 Variation 1: By Trifluoroacetic Acid Mediated Lactonization 219
10.2.2.1.2.2.2.2 Variation 2: By Cyclization of 2-(Halomethyl)benzoates 220
10.2.2.1.2.2.3 Method 3: From 2-Alkenylbenzoic Acids 221
10.2.2.1.2.2.3.1 Variation 1: By Lactonization with Chlorination 221
10.2.2.1.2.2.3.2 Variation 2: By Asymmetric Lactonization with Chlorination 222
10.2.2.1.2.2.3.3 Variation 3: By Lactonization with Thiocyanation 223
10.2.2.1.2.2.3.4 Variation 4: By Asymmetric Lactonization with Fluorination through Anion Phase Transfer 224
10.2.2.1.2.2.3.5 Variation 5: By Lactonization with Fluorination Using a Bifunctional Hydroxy–Carboxylate Catalyst 226
10.2.2.1.2.2.4 Method 4: From 2-Alkenylbenzamides by Diastereoselective Iodocyclization 228
10.2.2.1.2.2.5 Method 5: From 2-Alkynylbenzoic Acids by Base-Catalyzed Cyclization 229
10.2.2.1.2.2.6 Method 6: From 2-Alkynylbenzoic Acids and Aryl Halides by Palladium-Catalyzed Cyclization in the Presence of an Inorganic Base 232
10.2.2.1.2.2.7 Method 7: From Alkyl 2-Alkynylbenzoates 233
10.2.2.1.2.2.7.1 Variation 1: By Lactonization and Iodination 233
10.2.2.1.2.2.7.2 Variation 2: By Palladium-Catalyzed Cyclization 233
10.2.2.1.2.2.7.3 Variation 3: By Copper(II) Chloride Mediated Cyclization of N-Alkoxy-2-alkynylbenzamides with Halogenation 235
10.2.2.1.3 By Formation of One C—C Bond 236
10.2.2.1.3.1 With Formation of the 3—3a Bond 236
10.2.2.1.3.1.1 Method 1: From Vinyl 2-Bromobenzoates 236
10.2.2.2 Synthesis by Ring Transformation 237
10.2.2.2.1 Method 1: From 3-(tert-Butoxycarbonyl)-1H-benzo[d][1,2]oxazine-1,4(3H)-dione 237
10.2.2.2.2 Method 2: From Naphthalene by Ozonolysis 239
10.2.2.2.3 Method 3: From Indane Derivatives in Subcritical Media 240
10.2.2.2.4 Method 4: From 1,3-Dihydrobenzo[c]furan via Oxidation 241
10.2.2.2.5 Method 5: From Benzo[c]furan-1(3H)-imines by Hydrolysis 243
10.2.2.3 Synthesis by Substituent Modification 244
10.2.2.3.1 Method 1: Synthesis and Reactions of C-Halogen Benzo[c]furan-1(3H)-ones 244
15.6.3 Isoquinolinones 255
15.6.3.1 Isoquinolin-1(2H)-ones 256
15.6.3.1.1 Synthesis by Ring-Closure Reactions 256
15.6.3.1.1.1 By Formation of Three Bonds 256
15.6.3.1.1.1.1 Method 1: Palladium-Catalyzed Amination/Carbonylation/Cyclization Reaction of 1-Bromo-2-(2-bromovinyl)benzenes 257
15.6.3.1.1.1.2 Method 2: Carbonylation/Decarboxylation of Diethyl 2-(2-Iodoaryl)malonates with Imines or Imidoyl Chlorides 258
15.6.3.1.1.1.3 Method 3: Copper-Catalyzed Three-Component Coupling of 2-Halobenzoic Acids, Alkynylcarboxylic Acids, and Ammonium Acetate 260
15.6.3.1.1.1.4 Method 4: Three-Component Palladium-Catalyzed Condensation of 2-Iodobenzoates, Substituted Allenes, and Ammonium Tartrate 260
15.6.3.1.1.2 By Formation of One N—C and One C—C Bond 261
15.6.3.1.1.2.1 Method 1: Catalytic Carbonylation of N-Unprotected and N-Monosubstituted 2-Arylethylamines 262
15.6.3.1.1.2.2 Method 2: From 2-(Acylamino)-2-(2-bromophenyl)acetamides and tert-Butyl Isocyanide 263
15.6.3.1.1.2.3 Method 3: Reaction of a-Substituted 2-Lithio-ß-methoxystyrenes with Isocyanates with Subsequent Cyclization 264
15.6.3.1.1.2.4 Method 4: From N,N-Diethyl-2-methylbenzamides and Arenecarbonitriles or Hydrazones 266
15.6.3.1.1.2.5 Method 5: From 2-(Nitromethyl)benzaldehydes and Imines 268
15.6.3.1.1.2.6 Method 6: From (2-Carboxybenzyl)triphenylphosphonium Bromide by a Sequential Ugi/Wittig Process 270
15.6.3.1.1.2.7 Method 7: From ß-Enamino Esters and 2-Fluorobenzoyl Chlorides 271
15.6.3.1.1.2.8 Method 8: From 2-Methylbenzamides and Dimethylformamide Dimethyl Acetal 272
15.6.3.1.1.2.9 Method 9: Iodine(III)-Promoted Dehydrogenative Annulation of Benzamide Derivatives with Alkynes 273
15.6.3.1.1.2.10 Method 10: Photostimulated Reaction of 2-Iodobenzamide with Enolates 274
15.6.3.1.1.2.11 Method 11: Cobalt-Catalyzed Quinolinamine-Directed C(sp2)—H Activation with Alkenes 275
15.6.3.1.1.2.12 Method 12: Nickel-Catalyzed Annulation of Benzamides with Alkynes 276
15.6.3.1.1.2.13 Method 13: Nickel-Catalyzed Denitrogenative Insertion of Alkenes and Alkynes into 1,2,3-Benzotriazin-4(3H)-ones 278
15.6.3.1.1.2.14 Method 14: Copper-Mediated Coupling of Benzamides and 2-Halobenzamides 280
15.6.3.1.1.2.14.1 Variation 1: Coupling of Alkynes with 2-Halobenzamides 280
15.6.3.1.1.2.14.2 Variation 2: Coupling of Enolates with 2-Halobenzamides 281
15.6.3.1.1.2.14.3 Variation 3: Coupling of N-(Quinolin-8-yl)benzamides and Cyanoacetates with C—H Activation 282
15.6.3.1.1.2.15 Method 15: Ruthenium(II)-Catalyzed Oxidative C—H Activation 283
15.6.3.1.1.2.15.1 Variation 1: Reaction of Benzamides with Alkynes 283
15.6.3.1.1.2.15.2 Variation 2: Reaction of Hydroxamic Acids and N-Methoxyamides with Alkynes 284
15.6.3.1.1.2.16 Method 16: Rhodium(III)-Catalyzed Cyclization of Alkenes, Alkynes, and Analogues via C—H Activation 285
15.6.3.1.1.2.16.1 Variation 1: Annulation with Internal and Terminal Alkynes and 1,3-Diynes 285
15.6.3.1.1.2.16.2 Variation 2: Annulation of a-Mesyloxy-, a-Tosyloxy-, and a-Haloketones 287
15.6.3.1.1.2.16.3 Variation 3: Annulation of Diazo Compounds 288
15.6.3.1.1.2.16.4 Variation 4: Annulation with Alkenes 290
15.6.3.1.1.2.16.5 Variation 5: Annulation with Ethynyl N-Methyliminodiacetic Acid (MIDA) Boronates or Trifluoro(vinyl)borates 293
15.6.3.1.1.2.17 Method 17: Palladium-Catalyzed C—H Activation and Intermolecular Annulation 295
15.6.3.1.1.3 By Formation of One N—C Bond 297
15.6.3.1.1.3.1 Method 1: From 2-(Cyanomethyl)benzoic Acid 297
15.6.3.1.1.3.2 Method 2: From Methyl 2-Formylbenzoate and Hippuric Acid 298
15.6.3.1.1.3.3 Method 3: From 2-Alkynylbenzamides 299
15.6.3.1.1.3.4 Method 4: Silver(I)-Catalyzed Cyclization of 2-(Alk-1-ynyl)benzaldimines 300
15.6.3.1.1.3.5 Method 5: From 2-(2-Azidoethyl)benzamides by Staudinger-Type Reaction 301
15.6.3.1.1.3.6 Method 6: From a 2-(Oxiran-2-ylmethyl)benzonitrile 301
15.6.3.1.1.4 By Formation of One C—C Bond 302
15.6.3.1.1.4.1 Method 1: From 2-Arylethanamine Carbamates 302
15.6.3.1.1.4.2 Method 2: By Cyclization of 2-Arylethyl Isocyanates 303
15.6.3.1.1.4.3 Method 3: From N-(4-Nitrophenyl)-N'-(2-phenylethyl)ureas 304
15.6.3.1.1.4.4 Method 4: Cyclization of N-Substituted 2-Aroylbenzamides 305
15.6.3.1.1.4.5 Method 5: 1,8-Diazabicyclo[5.4.0]undec-7-ene-Promoted Cyclization of 2-(3-Hydroxy-1-alkynyl)benzamides 306
15.6.3.1.1.4.6 Method 6: Intramolecular Heck Cyclization of N-Allyl-2-iodobenzamides 307
15.6.3.1.1.4.7 Method 7: Palladium-Catalyzed Cyclization of N-(2-Furylmethyl)-2-iodobenzamides 308
15.6.3.1.1.4.8 Method 8: Palladium-Catalyzed Cyclization of 2-Bromo-N-cyclopropylbenzamides 309
15.6.3.1.1.4.9 Method 9: Metathesis of trans-3,4-Diallyl-3,4-dihydropyridin-2(1H)-ones 310
15.6.3.1.2 Aromatization 310
15.6.3.1.2.1 Method 1: Intramolecular Diels–Alder Reaction of N-(2-Furylethyl)propynamides 310
15.6.3.1.3 Synthesis by Ring Transformation 311
15.6.3.1.3.1 Method 1: Tandem Diels–Alder/Acylation Sequence of Dienamines with Maleic Anhydride 311
15.6.3.1.3.2 Method 2: From Isoquinolinium Salts, 3,4-Dihydroisoquinolines, and 1,2,3,4-Tetrahydroisoquinolines by Oxidation 312
15.6.3.1.3.3 Method 3: From Homophthalic Anhydrides 312
15.6.3.1.3.4 Method 4: From 1H-2-Benzopyran-1-ones and Amines 313
15.6.3.1.3.5 Method 5: From Benzo[c]furans 314
15.6.3.1.3.6 Method 6: From 2,3-Dihydro-1H-inden-1-ones by Schmidt Reaction or Beckmann Rearrangement 315
15.6.3.1.3.7 Method 7: Synthesis of Dihydroisoquinolin-1(2H)-ones by Reduction of Isoquinolin-1(2H)-ones 316
15.6.3.1.4 Synthesis by Substituent Modification 317
15.6.3.1.4.1 Substitution of Hydrogen 317
15.6.3.1.4.1.1 Method 1: Nitration of Isoquinolin-1(2H)-ones 317
15.6.3.1.4.2 Substitution of Halogens 318
15.6.3.1.4.2.1 Method 1: Cross-Coupling Reactions 318
15.6.3.1.4.3 Substitution of Oxygen or Nitrogen 319
15.6.3.1.4.4 Substitution of Carbon 320
15.6.3.1.4.5 Modification of Substituents 321
15.6.3.2 Isoquinolin-3-ones and Isoquinolin-3-ols 321
15.6.3.2.1 Synthesis by Ring-Closure Reactions 321
15.6.3.2.1.1 By Formation of Three Bonds 321
15.6.3.2.1.1.1 Method 1: Palladium-Catalyzed Aromatic Alkylation/Vinylation with Addition Reactions 321
15.6.3.2.1.2 By Formation of One N—C and One C—C Bond 322
15.6.3.2.1.2.1 Method 1: Ugi Condensation of Monomasked Phthalaldehydes with Amines, Carboxylic Acids, and Isocyanides 323
15.6.3.2.1.2.2 Method 2: Rhodium-Catalyzed Reaction of N-Methylbenzylamines with Diazomalonate 323
15.6.3.2.1.3 By Formation of One N—C Bond 324
15.6.3.2.1.3.1 Method 1: From 2-(2-Cyanoaryl)acetic Acids 324
15.6.3.2.1.3.2 Method 2: From Ethyl 2-(2-{[(tert-Butylsulfinyl)imino]methyl}phenyl)acetates 325
15.6.3.2.1.4 By Formation of One C—C Bond 326
15.6.3.2.1.4.1 Method 1: Friedel–Crafts Cyclization of N-Benzyl-a-bromoamides 326
15.6.3.2.1.4.2 Method 2: From N-Benzyl-2-(4-hydroxyaryl)acetamides 327
15.6.3.2.1.4.3 Method 3: From N-Alkynyl-N-benzylamines via C—H Activation and Oxidation 327
15.6.3.2.1.4.4 Method 4: From N-(2-Iodobenzylamides) of Propynoic Acids 328
15.6.3.2.2 Synthesis by Substituent Modification 329
15.6.3.2.2.1 Substitution of Hydrogen 329
18.10.15 Thiocarbonic Acids and Derivatives 337
18.10.15.1 Halothioformate O-Esters 337
18.10.15.1.1 Synthesis of Halothioformate O-Esters 337
18.10.15.1.1.1 Method 1: From Tetraethylammonium O-Alkyldithiocarbonates and a Vilsmeier Reagent 337
18.10.15.1.2 Applications of Halothioformate O-Esters in Organic Synthesis 338
18.10.15.1.2.1 Method 1: Synthesis of Chlorodifluoromethyl Ethers 338
18.10.15.2 Halothiocarbonylsulfenyl Halides and Halodithioformate S-Ester S'-Oxides [Chloro(alkylsulfanyl)sulfines] 340
18.10.15.2.1 Synthesis of Halothiocarbonylsulfenyl Halides and Halodithioformate S-Ester S'-Oxides [Chloro(alkylsulfanyl)sulfines] 340
18.10.15.2.1.1 Method 1: From Carbon Disulfide and Dihalogens 340
18.10.15.2.1.2 Method 2: Oxidation of Chlorodithioformates with 3-Chloroperoxybenzoic Acid 341
18.10.15.3 Thiocarbamoyl Halides 341
18.10.15.3.1 Synthesis of Thiocarbamoyl Halides 342
18.10.15.3.1.1 Method 1: From Tetramethylammonium Trifluoromethanethiolate and Secondary Amines 342
18.10.15.3.1.2 Method 2: From Thiophosgene and a Bicyclic Aziridine 342
18.10.15.3.2 Applications of Thiocarbamoyl Halides in Organic Synthesis 343
18.10.15.3.2.1 Method 1: [Bis(polyfluoroalkyl)amino]thiocarbamoyl as a Protecting Group for Alcohols 343
18.10.15.4 Thiocarbonate O,O-Diesters 344
18.10.15.4.1 Synthesis of Thiocarbonate O,O-Diesters 344
18.10.15.4.1.1 Method 1: From Thiophosgene and Two Different Phenols 344
18.10.15.4.1.2 Method 2: From 1,1'-Thiocarbonyldi(benzotriazole) and Two Different Alcohols or Phenols 345
18.10.15.4.2 Applications of Thiocarbonate O,O-Diesters in Organic Synthesis 345
18.10.15.4.2.1 Method 1: Selective Functionalization of Polyols Using O-Phenyl Chlorothioformate 345
18.10.15.4.2.2 Method 2: Synthesis of 1,1-Difluoroacetals 346
18.10.15.5 Dithiocarbonate O,S-Diesters 348
18.10.15.5.1 Synthesis of Dithiocarbonate O,S-Diesters 348
18.10.15.5.1.1 Method 1: From Carbon Disulfide, an Alcohol, and an Electrophilic Reagent 348
18.10.15.5.1.2 Method 2: From Epoxides and Carbon Disulfide 351
18.10.15.5.1.3 Method 3: From Thiophosgene or 1,1'-Thiocarbonyldi(benzotriazole), a Phenol, and a Thiol 352
18.10.15.5.2 Applications of Dithiocarbonate O,S-Diesters in Organic Synthesis 353
18.10.15.5.2.1 Method 1: Synthesis of a (Trifluoromethyl)sulfanyl Transfer Reagent 353
18.10.15.5.2.2 Method 2: Synthesis of Radical-Transfer Agents and Their Addition to Alkenes 354
18.10.15.5.2.3 Method 3: Addition to N-Acyliminium Salts 355
18.10.15.6 Thioselenocarbonate O,Se-Diesters 356
18.10.15.6.1 Synthesis of Thioselenocarbonate O,Se-Diesters 356
18.10.15.6.1.1 Method 1: From Chlorothioformate O-Esters 356
18.10.15.6.1.2 Method 2: From Chlorothioselenoformate Se-Esters 358
18.10.15.7 Thiocarbamate O-Esters 358
18.10.15.7.1 Synthesis of Thiocarbamate O-Esters 358
18.10.15.7.1.1 Method 1: From 1,1'-Thiocarbonyldi(benzotriazole), an Amine, and a Phenol or an Alcohol 358
18.10.15.7.1.2 Method 2: From a Chlorothioformate O-Ester and a Sulfoximine 359
18.10.15.7.1.3 Method 3: From Tetramethylthiuram Disulfide, Sodium Hydride, and a Phenol 360
18.10.15.7.2 Applications of Thiocarbamate O-Esters in Organic Synthesis 361
18.10.15.7.2.1 Method 1: Conversion of Primary Amines into Isothiocyanates 361
18.10.15.7.2.2 Method 2: Dealkylation of Tertiary Amines 362
18.10.15.8 Phosphorus-Substituted Thioformates 363
18.10.15.8.1 Synthesis of Phosphorus-Substituted Thioformates 363
18.10.15.8.1.1 Method 1: From Carbon Oxysulfide and an Aluminum Phosphide 363
18.10.15.9 Trithiocarbonates 363
18.10.15.9.1 Synthesis of Trithiocarbonates 363
18.10.15.9.1.1 Method 1: S-Oxidation of Trithiocarbonates with 3-Chloroperoxybenzoic Acid 363
18.10.15.9.1.2 Method 2: From a Chlorodithioformate S-Oxide and a Metal Arenesulfinate 364
18.10.15.9.2 Applications of Trithiocarbonates in Organic Synthesis 365
18.10.15.9.2.1 Method 1: Synthesis of 2-Cyanopropan-2-yl Carbonotrithioates for Reversible Addition–Fragmentation Chain-Transfer Polymerization 365
18.10.15.10 Dithioselenocarbonates and Dithiotellurocarbonates 365
18.10.15.10.1 Synthesis of Dithioselenocarbonates and Dithiotellurocarbonates 365
18.10.15.10.1.1 Method 1: From a Selenol or Selenide, Carbon Disulfide, and an Alkyl Halide 365
18.10.15.10.1.2 Method 2: From a Selenol or Metal Selenide and a Chlorodithioformate 366
18.10.15.10.1.3 Method 3: From a Thiol and an Se-Alkyl Chlorothioselenoformate 367
18.10.15.10.1.4 Method 4: Insertion of Carbon Disulfide into M—Se or M—Te Bonds 368
18.10.15.11 Dithiocarbamates 368
18.10.15.11.1 Synthesis of Dithiocarbamates 369
18.10.15.11.1.1 Method 1: From a Thiocarbamoyl Chloride and a Thiol 369
18.10.15.11.1.2 Method 2: From an Isothiocyanate and a Thiol 369
18.10.15.11.1.3 Method 3: From a Bicyclic Aziridine and a Chlorodithioformate 369
18.10.15.11.1.4 Method 4: From 1,1'-Thiocarbonyldi(benzotriazole), a Primary Amine, and a Thiol 370
18.10.15.11.1.5 Method 5: From an Aminophosphoniodithioformate and Diethylzinc 370
18.10.15.11.1.6 Method 6: Dimerization of an Amino Acid Derived Isothiocyanate 371
18.10.15.11.1.7 Method 7: From an Amine, Carbon Disulfide, and a Methyl Alkynoate 371
18.10.15.11.2 Applications of Dithiocarbamates in Organic Synthesis 372
18.10.15.11.2.1 Method 1: Synthesis of N-(Trifluoromethyl)amides 372
18.10.15.11.2.2 Method 2: Synthesis of an S-(2-Cyanopropan-2-yl) Dithiocarbamate for Reversible Addition–Fragmentation Chain-Transfer Polymerization 373
18.10.15.12 Phosphorus-Substituted Dithioformates 374
18.10.15.12.1 Synthesis of Phosphorus-Substituted Dithioformates 374
18.10.15.12.1.1 Method 1: From Dialkyl Phosphites, Carbon Disulfide, and an Alkyl Halide 374
18.10.15.12.1.2 Method 2: From a (Phenylsulfonylmethyl)phosphonate and Sulfur 375
18.10.15.12.1.3 Method 3: From a 1-Phospha-3-germaallene and Carbon Disulfide 376
18.10.15.12.2 Applications of Phosphorus-Substituted Dithioformates in Organic Synthesis 376
18.10.15.12.2.1 Method 1: S-(1-Phenylethyl) Phosphoryl- and Thiophosphoryldithioformates as Catalysts for Reversible Addition–Fragmentation Chain-Transfer Polymerization 376
18.10.15.13 Thiodiselenocarbonate Se,Se-Diesters 377
18.10.15.13.1 Synthesis of Thiodiselenocarbonate Se,Se-Diesters 377
18.10.15.13.1.1 Method 1: From a Metal Selenolate and Thiophosgene or Thiocarbonyldiimidazole 377
18.10.15.13.2 Applications of Thiodiselenocarbonate Se,Se-Diesters in Organic Synthesis 379
18.10.15.13.2.1 Method 1: Synthesis of Reversible Addition–Fragmentation Chain-Transfer Polymerization Agents 379
18.10.15.13.2.2 Method 2: 1,3-Diselenole-2-thione 380
18.10.15.14 Thioselenocarbamate Se-Esters and Thiotellurocarbamate Te-Esters 381
18.10.15.14.1 Synthesis of Thioselenocarbamate Se-Esters and Thiotellurocarbamate Te-Esters 381
18.10.15.14.1.1 Method 1: From an Isothiocyanate and a Selenol 381
18.10.15.14.1.2 Method 2: From a Thiocarbamoyl Chloride and a Selenol or Metal Selenide 382
18.10.15.14.1.3 Method 3: From a Secondary Amine and Carbon Sulfide Selenide 383
18.10.15.14.1.4 Method 4: From a (2-Aminophenyl)tellurolate and Carbon Disulfide 384
18.10.15.15 Thioureas and Thiosemicarbazides 385
18.10.15.15.1 Synthesis of Thioureas and Thiosemicarbazides 385
18.10.15.15.1.1 Method 1: From a Thiocarbamoyl Chloride and a Sulfoximine 385
18.10.15.15.1.2 Method 2: From 1,1'-Thiocarbonyldi(benzotriazole) and Two Different Amines 385
18.10.15.15.1.3 Method 3: From Tetramethylammonium Trifluoromethanethiolate and a Diamine 387
18.10.15.15.2 Applications of Thioureas and Thiosemicarbazides in Organic Synthesis 388
18.10.15.15.2.1 Method 1: Synthesis of Chiral Fluorous Organocatalysts 388
18.10.15.15.2.2 Method 2: Synthesis of Medicinal 2-Thioxoimidazolidin-4-ones 389
18.10.15.16 Phosphorus-Substituted Carbothioamides 389
18.10.15.16.1 Synthesis of Phosphorus-Substituted Carbothioamides 389
18.10.15.16.1.1 Method 1: From Isothiocyanates and PH Nucleophiles 389
18.10.15.16.1.2 Method 2: From Isothiocyanates and Tertiary Phosphorus Nucleophiles 391
18.10.15.16.1.3 Method 3: From a (Chloromethyl)phosphine Oxide, an Amine, and Sulfur 392
18.10.15.16.2 Applications of Phosphorus-Substituted Carbothioamides in Organic Synthesis 393
18.10.15.16.2.1 Method 1: Synthesis of Nucleoside-Based Enzyme Inhibitors 393
18.10.15.17 Thiocarbonyldiphosphorus Compounds 394
18.10.15.17.1 Synthesis of Thiocarbonyldiphosphorus Compounds 394
18.10.15.17.1.1 Method 1: From Methylenebis(phosphine sulfides), a Base, and Sulfur 394
18.10.15.17.1.2 Method 2: Disproportionation of Methylenebis(phosphine sulfides) 395
18.10.15.17.1.3 Method 3: Oxidative Cleavage of a Bis[bis(diphenylphosphino)methanide] Disulfide Complex 396
30.3.4.3 1,3-Dithianes 401
30.3.4.3.1 Synthesis of 1,3-Dithianes 401
30.3.4.3.1.1 Method 1: Thioacetalization of Carbonyl Compounds Using Lewis Acids 401
30.3.4.3.1.2 Method 2: Thioacetalization of Carbonyl Compounds Using Solid-Supported Catalysts 401
30.3.4.3.1.3 Method 3: Thioacetalization of Carbonyl Compounds Using Other Catalysts or Reagents 402
30.3.4.3.1.4 Method 4: Thioacetalization with Polymer-Supported Propane-1,3-dithiol 403
30.3.4.3.1.5 Method 5: Conjugate Addition of Propane-1,3-dithiol to Alk-1-ynyl Ketones and Esters 403
30.3.4.3.1.6 Method 6: Metalation or Transmetalation of 1,3-Dithianes 404
30.3.4.3.1.7 Method 7: Addition of 2-Lithio-1,3-dithiane Derivatives to Epoxides or Aziridines 406
30.3.4.3.1.8 Method 8: Addition of 2-Metallo-1,3-dithiane Derivatives to C=N Compounds 408
30.3.4.3.1.9 Method 9: 1,4-Addition Reactions of 2-Metallo-1,3-dithiane Derivatives to a,ß-Unsaturated Carbonyl Compounds 409
30.3.4.3.1.10 Method 10: Asymmetric 1,4-Addition Reactions of 1,3-Dithiane Derivatives to a,ß-Unsaturated Compounds 411
30.3.4.3.1.11 Method 11: Reactions of 2-Silyl-1,3-dithiane Derivatives with Aldehydes and Ketones 412
30.3.4.3.1.12 Method 12: Reactions of 2-Alkylidene-1,3-dithiane Derivatives 413
30.3.4.3.1.13 Method 13: Synthesis and Reactions of 1,3-Dithiane 2-Carbocations 413
30.3.4.3.1.14 Method 14: Synthesis and Reactions of 1,3-Dithiane 2-Carbon Radicals 415
30.3.4.3.1.15 Method 15: Other Methods 417
30.3.4.3.2 Applications of 1,3-Dithianes in Organic Syntheses 420
30.3.4.3.2.1 Method 1: Ring-Expansion Reactions 420
30.3.5.3 1,3-Dithiepanes 423
30.3.5.3.1 Method 1: Thioacetalization of Carbonyl Compounds Using Lewis Acids 423
30.3.5.3.2 Method 2: Miscellaneous Syntheses 423
30.4.3 S, N-Acetals (a-Amino Sulfur Derivatives) 427
30.4.3.1 Method 1: Alkynylation of Thioiminium Salts Derived from Thioamides 427
30.4.3.2 Method 2: Alkylation of Lithium Thiolates from Thioformamides 428
30.4.3.3 Method 3: Addition of Thiols to N-Acyl Imines by Asymmetric Organocatalysis 430
30.4.3.4 Method 4: Addition of Thiols to Ketimines by Asymmetric Organocatalysis 431
30.4.3.5 Method 5: Addition Cyclization Using 1,4-Dithiane-2,5-diol (Formal [3 + 2] Annulation) 434
30.4.3.6 Method 6: Electrophilic Sulfanylation 436
30.4.3.7 Method 7: Electrophilic Amination 437
30.6.3 N, N-Acetals (Aminals) 441
30.6.3.1 Method 1: Tandem Aza-Ene-Type Reaction–Cyclization Cascade 441
30.6.3.2 Method 2: Alkylation of Aminal Radicals Derived from Amidines and Amidinium Salts under Reductive Conditions 442
30.6.3.3 Method 3: Lewis Acid Catalyzed [3 + 2]-Cycloannulation Using an Aldehyde, a 2-Aminobenzamide, and a Bis-silyl Dienediolate 444
30.6.3.4 Method 4: Sequential Aza-Diels–Alder Reaction and Iminium Ion Induced Cyclization 445
30.6.3.5 Method 5: Imidazolidinone Acid Salt Catalyzed Tandem Allylation–Cyclization 446
30.6.3.6 Method 6: Transition-Metal-Catalyzed Tandem Allylation–Cyclization 447
31.5.1.5.12 Synthesis of Phenols from Nonaromatic Precursors 451
31.5.1.5.12.1 Method 1: Benzannulation Reactions 451
31.5.1.5.12.1.1 Variation 1: Metal-Free Benzannulation 451
31.5.1.5.12.1.2 Variation 2: Metal-Catalyzed Benzannulation 452
31.5.1.5.12.2 Method 2: Cycloaromatization Reactions 455
31.5.1.5.12.2.1 Variation 1: Diels–Alder Reactions 455
31.5.1.5.12.2.2 Variation 2: [3 + 3]-Cycloaddition Reactions 461
31.5.1.5.12.2.3 Variation 3: Metal-Catalyzed Cycloaromatization Reactions 465
31.5.1.5.12.2.4 Variation 4: Metal-Catalyzed Cycloisomerization of Enynes Containing Cyclopropenes 471
31.5.1.5.12.3 Method 3: Cyclocondensation Reactions 472
31.5.1.5.12.3.1 Variation 1: From Cyclobutenones 472
31.5.1.5.12.3.2 Variation 2: From a,ß-Unsaturated Ketones 473
31.5.1.5.12.3.3 Variation 3: From Cinnamaldehydes 475
31.5.1.5.12.3.4 Variation 4: From Allenic Ketones 478
31.5.1.5.12.4 Method 4: Ring-Closing Metathesis 480
31.5.1.5.12.4.1 Variation 1: From Triene Ketones 480
31.5.1.5.12.4.2 Variation 2: From Dienyne Ketones 481
31.5.1.5.12.4.3 Variation 3: From Hydroxydienones 483
Author Index 487
Abbreviations 507

Erscheint lt. Verlag 11.7.2018
Reihe/Serie Science of Synthesis
Science of Synthesis
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Schlagworte Organic Chemistry • organic reaction • organic synthesis • Synthese
ISBN-13 9783132423220 / 9783132423220
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich