Microbial Fuel Cell (eBook)
XIX, 506 Seiten
Springer International Publishing (Verlag)
978-3-319-66793-5 (ISBN)
This book represents a novel attempt to describe microbial fuel cells (MFCs) as a renewable energy source derived from organic wastes. Bioelectricity is usually produced through MFCs in oxygen-deficient environments, where a series of microorganisms convert the complex wastes into electrons via liquefaction through a cascade of enzymes in a bioelectrochemical process.
The book provides a detailed description of MFC technologies and their applications, along with the theories underlying the electron transfer mechanisms, the biochemistry and the microbiology involved, and the material characteristics of the anode, cathode and separator. It is intended for a broad audience, mainly undergraduates, postgraduates, energy researchers, scientists working in industry and at research organizations, energy specialists, policymakers, and anyone else interested in the latest developments concerning MFCs.
Debabrata Das, Ph.D. (IIT-Delhi), FIAHE, FNAE, FBRS, FAScT, FIE(I), is a senior professor and former MNRE Renewable Energy Chair Professor at the Indian Institute of Technology Kharagpur, India. He has made significant contributions to bioenergy production processes by applying fermentation technology. His primary areas of research are gaseous fuel production from organic wastes; CO2 sequestration, biodiesel production from microalgae; and electricity generation from microbial fuel cells. He has authored more than 140 research publications in peer-reviewed journals, has written two textbooks and one reference book, and has contributed more than 23 book chapters. He has been awarded the IAHE Akira Mitsue award and Malaviya Memorial award for senior faculty for his contributions to hydrogen research. He is Editor-in-Chief of the American Journal of Biomass and Bioenergy and serves on the editorial boards of several international journals.
Debabrata Das, Ph.D. (IIT-Delhi), FIAHE, FNAE, FBRS, FAScT, FIE(I), is a senior professor and former MNRE Renewable Energy Chair Professor at the Indian Institute of Technology Kharagpur, India. He has made significant contributions to bioenergy production processes by applying fermentation technology. His primary areas of research are gaseous fuel production from organic wastes; CO2 sequestration, biodiesel production from microalgae; and electricity generation from microbial fuel cells. He has authored more than 140 research publications in peer-reviewed journals, has written two textbooks and one reference book, and has contributed more than 23 book chapters. He has been awarded the IAHE Akira Mitsue award and Malaviya Memorial award for senior faculty for his contributions to hydrogen research. He is Editor-in-Chief of the American Journal of Biomass and Bioenergy and serves on the editorial boards of several international journals.
Foreword 6
Preface 8
Contents 10
Acronyms 13
Chapter 1: Introduction 18
1.1 Background 18
1.2 Basic Principles of Microbial Fuel Cell (MFC) 19
1.3 Components of MFC 21
1.3.1 Anode Materials 21
1.3.2 Types of Separators/Membranes 22
1.3.3 Cathode Materials 24
1.4 MFC Architecture 24
1.5 MFC Performance Indicators 25
1.6 Modelling of Reaction and Transport Processes in MFCs 26
1.7 Applications of MFCs 26
1.7.1 Bioremediation and Wastewater Treatment 27
1.7.2 Removal and Recovery of Heavy Metals 28
1.7.3 Constructed Wasteland Management 28
1.7.4 Water Desalination 29
1.7.5 Biophotovoltaics 29
1.7.6 Biosensors 30
1.7.7 MFC as Alternate Power Tool 30
1.7.8 Biochemical Production via Microbial Electrosynthesis 31
1.8 Scaling Up of MFC 31
1.9 Challenges in MFC and Future Scope 33
1.10 Conclusion 33
References 34
Chapter 2: Principles of Microbial Fuel Cell for the Power Generation 37
2.1 Introduction 37
2.1.1 Fuel Cell and Brief Development of MFC 38
2.2 Basic Principle of MFC 39
2.2.1 Advantages of MFC over Other Bioenergy Processes 39
2.3 Power Generation and Evaluation of MFC Performance 40
2.3.1 Classifications of MFCs 42
2.3.2 Potential Losses in MFC 44
2.3.3 Factors Affecting the Performance of MFC 45
2.3.4 Performance Evaluation for MFC 45
2.3.5 Coulombic Efficiency and Energy Efficiency 46
2.4 Microbes as Catalyst in MFC and Their Various Mode of Exo-cellular Electron Transfer to Electrode 46
2.4.1 Electron Transfer by C-type Cytochromes 47
2.4.2 Microbial Nanowire 50
2.4.3 Electron Shuttles or Mediators 51
2.5 MFC for Wastewater Treatment 52
2.6 Other Applications of MFC 52
2.6.1 MFC as Toxic Sensor and BOD Biosensor 53
2.6.2 Preparation of Metal Nanoparticles 54
2.6.3 Other Bioelectrochemical System Adapted from MFC 54
2.7 Conclusion 55
References 55
Chapter 3: Characteristics of Microbes Involved in Microbial Fuel Cell 58
3.1 Introduction 58
3.2 Electrocigens - Nature and Source 59
3.2.1 Natural Sources for EAB 61
3.2.2 Artificial Sources for EAB 62
3.3 Growth Conditions of EAB 63
3.3.1 pH 63
3.3.2 Temperature 65
3.3.3 Substrate 66
3.3.4 Electrode Material and Membranes 66
3.4 Bioelectrogenesis and Mechanisms of Exocellular Electron Transfer (EET) 67
3.4.1 Mediated Electron Transfer (MET) 69
3.4.2 Direct Electron Transfer (DET) 69
3.5 Factors Affecting EAB Performance in MFC 70
3.5.1 Mass Transfer Limitations 70
3.5.2 Bacterial Metabolism Losses 70
3.5.3 Activation Losses 71
3.5.4 Electron-Quenching Reactions 71
3.6 Strategies for Studying EAB 71
3.6.1 Microbiological Methods 71
3.6.2 Molecular Methods 72
3.6.3 Electrochemical Methods 72
3.7 Microbial Composition of Biocathode 73
3.8 Challenges and Future Prospects 73
3.9 Conclusion 74
References 74
Chapter 4: Microbial Ecology of Anodic Biofilms: From Species Selection to Microbial Interactions 78
4.1 Introduction to Electroactive Biofilms 78
4.2 Breakdown of Fermentation Mix End Products 79
4.2.1 Acetate 79
4.2.2 Formate 82
4.2.3 Lactate 82
4.2.4 Propionate 83
4.2.5 Butyrate 85
4.2.6 Ethanol 85
4.3 Breakdown of Glucose 86
4.3.1 Direct Conversion of Glucose to Current 87
4.3.2 Glucose Fermentation to Mixed End Products 89
4.3.2.1 Glucose to Acetate and Hydrogen 89
4.3.2.2 Glucose to Lactate 89
4.3.2.3 Glucose to Propionate 90
4.3.2.4 Glucose to Succinate, Acetate and Formate 90
4.3.2.5 Glucose to Butyrate 90
4.3.2.6 Glucose to Ethanol 90
4.3.2.7 Pyruvate to Mixed End Products 91
4.3.2.8 Lactate to Mixed End Products 91
4.3.3 Mixed End Products to Current 92
4.4 Microbial Communities for Wastewater Substrates Degradation 93
4.5 Conclusion 94
References 95
Chapter 5: Anodic Electron Transfer Mechanism in Bioelectrochemical Systems 101
5.1 Introduction 101
5.2 Electron Transfer Mechanisms 103
5.2.1 Direct Electron Transfer 103
5.2.2 Mediated Electron Transfer 104
5.2.2.1 MET via Exogenous Mediators 105
5.2.2.2 MET via Endogenous Mediators 106
5.3 Interspecies Electron Transfer Through Conductive Minerals 107
5.4 Factors Influencing Electron Transfer Mechanism 108
5.4.1 Biofilm Integrity 108
5.4.2 Electrodes Structure 109
5.4.3 Catalyzed Electrodes 110
5.4.4 Electrolyte and Electron Carriers 110
5.5 Conclusions 111
References 111
Chapter 6: Development of Suitable Anode Materials for Microbial Fuel Cells 115
6.1 Introduction 115
6.2 Essential Requirements of Anode Materials 115
6.2.1 Surface Area and Porosity 115
6.2.2 Fouling and Poisoning 116
6.2.3 Electronic Conductivity 116
6.2.4 Biocompatibility 117
6.2.5 Stability and Long Durability 117
6.2.6 Electrode Cost and Availability 117
6.3 Anode Materials Employed in MFCs 118
6.3.1 Carbonaceous Electrodes 118
6.3.1.1 Types of Carbonaceous Anode 118
6.3.1.2 Plane or 2D Carbonaceous Anodes 119
6.3.1.3 3D Carbonaceous Anodes 121
6.3.2 Non-carbonaceous Electrodes 123
6.3.2.1 Noble Metal Materials 123
6.3.2.2 Non-noble Metal Materials 124
6.3.2.3 3D and Composites Metal-Based Electrodes 124
6.4 Surface Treatment 125
6.4.1 Heat Treatment 125
6.4.1.1 Treatment of Anode Materials 127
6.4.1.2 Chemical Treatment 127
Ammonia/Acid Treatment 127
Electrochemical Oxidation 128
6.4.2 Advanced Nanostructure Modification of Anodes 129
6.4.2.1 Modification of Anodes by Carbon Nanotubes (CNT) and Its Composites 129
6.4.2.2 Modification of Anodes by Graphene and Its Composites 131
6.4.2.3 Modification of Anodes by Conductive Polymer and Its Composites 132
6.5 Challenge and Outlook 133
6.6 Conclusion 133
References 134
Chapter 7: Performances of Separator and Membraneless Microbial Fuel Cell 139
7.1 Introduction 139
7.2 Parameters Used in MFC Performance 141
7.2.1 Proton Transport Mechanism in a PEM 143
7.3 Advantages and Disadvantages of Separator and Separatorless MFC 143
7.4 Type of Separators and Their Performance in MFC 144
7.4.1 Ion-Exchange Membranes 144
7.4.2 Salt Bridge 145
7.4.3 Porous Membrane 146
7.4.4 Polymer Electrolyte Membrane and Composite Membranes 147
7.5 Separatorless MFC 149
7.6 Current Status 150
7.7 Conclusion 151
References 151
Chapter 8: Role of Cathode Catalyst in Microbial Fuel Cell 155
8.1 Introduction 155
8.2 Non-oxygen Terminal Electron Acceptors 157
8.3 Oxygen Reduction Reaction (ORR) at Cathode: Fundamentals 158
8.3.1 Evaluation of ORR Catalysts: Figure of Merits 160
8.4 Cathode Catalysts 162
8.4.1 Pt and Pt-based ORR Catalysts 163
8.4.2 Pt-free ORR Catalysts in MFC 165
8.4.2.1 Metals and Multimetallics 165
8.4.2.2 Metal Oxide-Based ORR Catalysts 166
8.4.2.3 Metal Macrocycles-Based ORR Catalysts 167
8.4.2.4 Carbon-Based ORR Catalysts 169
8.4.2.5 Metal Carbides as ORR Catalysts 170
8.4.2.6 Electronically Conductive Polymer Catalysts 171
8.4.2.7 Biocatalysts for Cathodic Reduction 172
8.5 Conclusions 173
References 173
Chapter 9: Role of Biocathodes in Bioelectrochemical Systems 178
9.1 Introduction 178
9.2 BES Technology Utilizing Biocathodes 179
9.3 Electron Acceptors and Microorganisms 180
9.4 Biocathode Materials 181
9.4.1 General Material Characteristics 182
9.4.1.1 Biocompatibility and Surface Roughness 182
9.4.1.2 Surface Area and Porosity 182
9.4.1.3 Conductivity 182
9.4.1.4 Hydrophobicity 183
9.5 Biofilm Formation 183
9.5.1 Biofilm Architecture 183
9.6 Electron Transfer 184
9.6.1 Aerobic and Anaerobic Bacterial Electron Transport Chains 184
9.6.2 Electrode-Microbe Electron Transfer Mechanisms 185
9.6.2.1 Direct Electron Transfer (DET) 185
9.6.2.2 Indirect Electron Transfer (IDET) 186
9.6.2.3 Proteins Affiliated with Extracellular Electron Transfer 186
9.7 Microbial Characterization Methods 187
9.7.1 Biofilm Characterization 187
9.7.2 Microorganism Detection 187
9.7.3 Composition and Characterization of Microbial Communities 188
9.7.4 Analysis of Functional Genes and Activity of Microbes 189
9.7.5 Polyphasic Taxonomical Approach 189
9.7.6 Microscopic Methods 190
9.7.7 Spectroscopic Methods 191
9.7.8 Nuclear Magnetic Resonance Imaging 191
9.7.9 Flow Cytometry 191
9.8 Conclusions 192
References 192
Chapter 10: Physicochemical Parameters Governing Microbial Fuel Cell Performance 201
10.1 Introduction 201
10.2 Anode Electrode for MFC 201
10.2.1 Plain Anode Materials 201
10.2.2 Surface Modifications of Anode Electrode 203
10.3 Cathode Electrode 204
10.3.1 Cathode Electrode with Catalysts 204
10.3.2 Cathode Electrode Without Catalysts 205
10.4 Membranes/Separators Tested in MFC 205
10.4.1 Ion Exchange Membrane 205
10.4.2 Size Selective Separators 206
10.5 Reactor Configurations 207
10.6 Effect of Temperature on MFC Performance 209
10.7 Electrolyte pH in Governing MFC Performances 209
10.8 Electrolyte Conductivity 211
10.9 Oxidants in an MFC Cathode 212
10.10 Substrates (Fuels) in the MFC Anode Chamber 215
10.11 Conclusions 216
References 216
Chapter 11: Reactor Design for Bioelectrochemical Systems 221
11.1 Introduction 221
11.2 Components of BES 222
11.2.1 Anode Materials 222
11.2.1.1 Nanostructured Carbon-Based Electrodes 222
11.2.1.2 Carbon Nanotubes 224
11.2.1.3 Graphene 225
11.2.1.4 Conductive Polymers 226
11.2.1.5 Metal Nanoparticles 227
11.2.2 Cathode Materials 229
11.2.2.1 Chemical Cathodes 229
11.2.2.2 Biocathodes 230
11.2.3 Membranes 230
11.2.3.1 Cation Exchange Membranes 231
11.2.3.2 Anion Exchange Membranes 231
11.3 Bioelectrochemical Cell Designs 231
11.3.1 Dual Chamber 231
11.3.2 Single Chamber 233
11.3.3 Stack Designs 233
11.4 Future Perspectives and Conclusions 233
References 236
Chapter 12: Microfluidic Microbial Fuel Cell: On-chip Automated and Robust Method to Generate Energy 240
12.1 Introduction 240
12.2 Microfluidics - Basic Principles Pertaining to MFC 241
12.2.1 Summary of Principles 241
12.2.2 Amenability to Integration 242
12.2.3 Principle to Develop Membraneless MMFC 243
12.3 Membraned Microfluidic MFC (M+MMFC) 243
12.3.1 Diverse Membraned Microfluidic MFC (M+MMFC) 243
12.3.1.1 Conventional Photolithography (Chen et al. 2011 Dvila et al. 2011
12.3.1.2 Soft Lithography (Choi and Chae 2013 Li et al. 2011
12.3.1.3 Paper-Based Devices (Choi et al. 2015 Fraiwan and Choi 2014
12.3.1.4 Laser Micromachining 248
12.3.2 Challenges in Conventional Microfluidic MFCs (M+MMFC) 248
12.3.2.1 High Internal Resistance 248
12.3.2.2 Low Energy Density Output 248
12.3.2.3 Oxygen Penetration 248
12.4 Membraneless Microfluidic MFC (M-MMFC) 249
12.4.1 Key Membraneless Microfluidic MFC (M-MMFC) and Their Comparison 250
12.4.2 Salient Features of M-MMFC 252
12.4.2.1 Membraneless 252
12.4.2.2 Higher Output Power Density/Current Density 252
12.4.2.3 Relatively Shorter Response Time 252
12.4.3 Challenges in M-MMFC 253
12.4.3.1 Ensuring the Required Flow Environment 253
12.4.3.2 Smart Integration of Various Components of M-MMFC 253
12.5 Future Opportunities 253
12.5.1 Electricity Generation 253
12.5.2 In Vivo Operation 253
12.5.3 Input Power Requirement 254
12.5.4 Other Applications 254
12.6 Conclusion 254
References 255
Chapter 13: Diagnostic Tools for the Assessment of MFC 259
13.1 Introduction 259
13.2 Reporting Data Using Typical Performance Indicators 260
13.2.1 Open Circuit Voltage (OCV) 260
13.2.2 Half-Cell Potential 260
13.2.3 Current Density 260
13.2.4 Power Density 261
13.2.5 Columbic Efficiency 261
13.2.5.1 Batch or Fed-Batch Mode of Operation 262
13.2.5.2 Continuous Mode of Operation 262
13.2.6 Energy Efficiency 262
13.3 Performance Evaluation via Electro-chemical Tools 263
13.3.1 Polarization 263
13.3.2 Current Interruption (CI) 264
13.3.3 Voltammetry Techniques 265
13.3.3.1 Linear Sweep Voltammetry (LSV) 266
13.3.3.2 Cyclic Voltammetry (CV) 267
13.3.3.3 Differential Pulse Voltammetry (DPV) 269
13.3.3.4 Chronoamperometry (CA) 269
13.3.4 Butler-Volmer Analysis and Tafel Plots 271
13.3.5 Electrochemical Impedance Spectroscopy (EIS) Analysis 271
13.4 Material Characterization Methods 272
13.4.1 Scanning Electron Microscopy (SEM) 272
13.4.2 Transmission Electron Microscopy (TEM) 273
13.4.3 X-Ray Diffraction (XRD) 274
13.4.4 BET Surface Area Measurements 274
13.4.5 Other Methods 274
13.5 Techniques for Microbial Community Analysis 275
13.5.1 DGGE 275
13.5.2 ARDRA 275
13.5.3 Pyrosequencing 276
13.5.4 Other Molecular Techniques 276
13.6 Waste and Wastewater Analysis 277
13.7 Conclusions 277
References 277
Chapter 14: Modelling of Reaction and Transport in Microbial Fuel Cells 279
14.1 Introduction 279
14.2 Principle of an MFC 280
14.3 Classification of the Models 281
14.4 Overall Models 282
14.5 Models Pertaining to Anode-Bacterial Interactions 283
14.5.1 Background Current and Modelling of Endogenous Metabolism 285
14.6 Models Pertaining to Membrane/Separator 289
14.7 Models Pertaining to Oxygen Reduction Reaction (ORR) Kinetics at Cathode 291
14.8 Conclusion 292
References 293
Chapter 15: Bioremediation and Power Generation from Organic Wastes Using Microbial Fuel Cell 294
15.1 Introduction 294
15.2 Basic Principles of Power Generation from Organic Wastes in MFC 295
15.3 Electrode Mechanisms 296
15.3.1 Reactions at Anode 296
15.3.2 Reactions at Cathode 297
15.4 MFC Configurations 298
15.5 Microbial Remediation Using MFC-Based Technologies 299
15.5.1 MFC-Assisted Biodegradation of Azo Dyes 300
15.5.2 Bioremediation of Hydrocarbons and Their Derivatives 303
15.5.3 Removal of Heavy Metals 304
15.5.4 Other Pollutants 305
15.6 Organic Wastes and Wastewater as Potential Feedstocks for MFCs 306
15.6.1 Solid Residual Wastes 306
15.6.2 Organic Wastewater 308
15.7 Challenges 310
15.8 Conclusions and Future Prospects 311
References 311
Chapter 16: Removal and Recovery of Metals by Using Bio-electrochemical System 316
16.1 Introduction 316
16.2 Principles of Bioelectrochemical Systems (BESs) 316
16.3 Metals in the Environment 318
16.4 Bio-electrochemical Metal Removal and Recovery 319
16.4.1 Arsenic 319
16.4.2 Cadmium (Cd) 319
16.4.3 Chromium (Cr) 321
16.4.4 Cobalt (Co) 324
16.4.5 Copper (Cu) 324
16.4.6 Mercury (Hg) 326
16.4.7 Gold (Au) 328
16.4.8 Nickel (Ni) 328
16.4.9 Selenium (Se) 332
16.4.10 Silver (Ag) 333
16.4.11 Vanadium (V) 335
16.5 Conclusions 338
References 338
Chapter 17: Sediment Microbial Fuel Cell and Constructed Wetland Assisted with It: Challenges and Future Prospects 343
17.1 Introduction 343
17.2 Fundamentals of SMFCs and CW-MFCs 345
17.3 Factors Affecting the Performance of SMFCs and CW-MFCs 346
17.3.1 Electrode Materials 346
17.3.2 Electrode Spacing and External Resistance 348
17.3.3 Effect of Catalysts and Mediators 348
17.3.4 Effect of pH, Dissolved Oxygen and Temperature 350
17.3.5 Plants 351
17.3.6 Operating Conditions 353
17.4 Electricity Generation as a Function of Wastewater Treatment 353
17.5 Scaling Up of SMFCs and Operating Wireless Sensors 354
17.6 Conclusion 355
References 356
Chapter 18: Fundamentals of Microbial Desalination Cell 361
18.1 Introduction 361
18.2 Ion Exchange Membrane (IEM) Based MDC 362
18.2.1 Reactor Design 362
18.2.2 Junction Potential and Water Transport 366
18.3 MDC Performance 368
18.3.1 Salinity Removal 368
18.3.2 Maximum Current vs. Maximum Power 368
18.3.3 Current Efficiency 369
18.3.4 Coulombic Efficiency 369
18.3.5 COD Removal 370
18.3.6 Effects of Electrolyte pH 370
18.3.7 Salinity Effects on Exoelectrogenic Bacteria 371
18.3.8 Cathode Reactions: O2 Reduction vs. H2 Evolution 371
18.4 Types of Microbial Desalination Cells (MDCs) 372
18.4.1 Osmotic MDCs 372
18.4.2 Bipolar Membrane MDCs 372
18.4.3 Capacitive Microbial Desalination Cell 374
18.5 Challenges and Perspective 375
18.5.1 Control of pH 375
18.5.2 Improving Performance of Stacked MDCs 375
18.5.3 IEM Integrity Under High Microbial Activity 376
18.5.4 Water Safety 377
18.6 Conclusion 377
References 377
Chapter 19: Biophotovoltaics: Conversion of Light Energy to Bioelectricity Through Photosynthetic Microbial Fuel Cell Technolo... 380
19.1 Introduction 380
19.2 Mechanism of Development of Potential Gradient in Biological System 381
19.3 Light Harvesting Technologies for Bioelectricity Generation 382
19.3.1 Chemical Based 382
19.3.2 Biological Based 383
19.3.2.1 Anoxygenic Photosynthesis at Anode 383
19.3.2.2 Photosynthetic at Anode with Artificial Mediators Biological Photovoltaics 383
19.3.2.3 Oxygenic Photosynthesis at Anode 384
19.3.2.4 Oxygenic Photosynthesis at Cathode 386
19.3.2.5 Plant MFC (Synergism Between Mixed Heterotrophic Bacteria and Plant) 387
19.3.3 Ecological Engineered System (EES): MFC to Wetland System 387
19.3.4 Light Harvesting Proteins for Photovoltaic and Photoelectrochemical Devices 388
19.4 Applications 389
19.4.1 Wastewater Treatment 390
19.4.2 Powering Underwater Monitoring Devices 390
19.4.3 BOD Sensing 390
19.4.4 Biohydrogen Production in PhFC 391
19.5 Conclusion 391
References 391
Chapter 20: Application of Microbial Fuel Cell as a Biosensor 395
20.1 Introduction 395
20.2 Microbial Biosensors 395
20.3 Principle of MFC as a Biosensor 397
20.4 Advantages of MFC as a Sensor 399
20.5 BOD and Its Importance 399
20.6 Methods of Assessing BOD 400
20.7 Application of MFC as a BOD Sensor 400
20.7.1 MFC as a BOD Biosensor-State of Art 401
20.7.2 Challenges of MFC-Based BOD Biosensors 404
20.8 Upcoming Applications of MFC in the Field of Sensing 405
20.8.1 Screening of Electroactive Microbes 405
20.8.2 Toxicity Sensing 406
20.8.3 VFA Sensing 406
20.9 Conclusion and Future Perspectives 406
References 407
Chapter 21: Microbial Fuel Cell as Alternate Power Tool: Potential and Challenges 409
21.1 Introduction 409
21.2 MFCs as Alternative Power Sources 412
21.2.1 MFCs Powering Remote Sensors 412
21.2.2 MFCs for Robotics 414
21.2.3 Paper-Based MFC Devices 416
21.2.4 Pee Power Urinal Field Trials 418
21.2.5 MFCs Powering Low Power Density Devices 419
21.3 Factors Constraining Energy Output of MFCs 419
21.4 Energy Harvest in MFC 421
21.5 Conclusions 422
References 423
Chapter 22: Microbially Mediated Electrosynthesis Processes 426
22.1 Microbial Electrosynthesis for Bioelectrochemical Processes 426
22.2 Factors Affecting the Performance of BES 428
22.2.1 Electrochemical Parameters 429
22.2.1.1 Activation Polarization 429
22.2.1.2 Ohmic Polarization 429
22.2.1.3 Voltage Reversal 430
22.2.1.4 Applied Potential 430
22.2.2 Physicochemical Parameters 430
22.2.2.1 Substrate Availability 431
22.2.2.2 Salinity 431
22.2.2.3 Concentration Polarization 431
22.2.3 Operational Parameters 432
22.2.3.1 Mediators 432
22.2.3.2 pH Splitting 433
22.2.3.3 Other Operational Consideration 433
22.2.4 Engineering Parameters 434
22.2.4.1 Reactor Configuration 434
22.2.4.2 Internal Currents 435
22.2.4.3 Membranes 435
22.2.4.4 State-of-the-Art Electrode Materials 436
22.2.4.5 Tubings and Compartments 436
22.2.5 Microbial Parameters 437
22.2.6 Economic Parameters 437
22.3 Biocathode Development 438
22.4 Advantages and Application of Bioelectrochemical Conversions 440
22.5 Conclusions 442
References 443
Chapter 23: Recent Progress Towards Scaling Up of MFCs 448
23.1 Genesis and Advancement in MFC Research 448
23.2 Bottleneck in MFC Research 450
23.3 Scaling Up of MFC 451
23.4 Hybrid Approach of MFC for Wastewater Treatment 453
23.5 Life Cycle Assessment of MFC 455
23.6 Current Challenges and Potential Opportunities 456
23.7 MFC: Outlook and Future Perspectives 457
23.8 Conclusion 458
References 459
Chapter 24: Scaling Up of MFCs: Challenges and Case Studies 463
24.1 Introduction 463
24.2 Limitations in Large Scale Applicationof MFCs 464
24.3 Electrochemical Limitations: Design 466
24.3.1 Electrodes 466
24.3.2 Reactor Vessel Design 466
24.3.3 Electrical Connectivity 467
24.4 Operational Limitations 467
24.4.1 Start-Up 467
24.4.2 Electrolyte 468
24.4.2.1 Chemical Composition 468
24.4.2.2 Substrate Loading 469
24.5 Economic Limitations 470
24.6 MFCs Toward Commercial Applications: Case Studies 471
24.6.1 Bioelectro MET 471
24.6.2 Value from Urine 474
24.6.3 EcoBots 475
24.6.4 Pee Power Urinal 476
24.7 Possible Solutions to Overcomethe Limitations 477
24.7.1 Electrode Spacing and Specific Surface Area 477
24.7.2 Electrolyte Flow Dynamics 478
24.7.3 Minimizing Fabrication Defects 480
24.8 Conclusions and Future Perspectives 480
References 481
Chapter 25: Challenges in Microbial Fuel Cell and Future Scope 486
25.1 Introduction 486
25.2 Metabolic Reactions Intricate in Bioelectricity Generation from Exoelectrogens 487
25.3 MFC Applications 490
25.4 Factors Governing MFC Performance 490
25.4.1 Biocatalyst 491
25.4.2 Substrate 491
25.4.3 Substrate/COD Concentration 491
25.4.4 Feed pH 492
25.5 Bottlenecks of MFC 492
25.5.1 Polarization Losses 492
25.5.2 Activation Losses (AL) 493
25.5.3 Concentration Polarization (CP) 494
25.5.4 Ohmic Losses (OL) 494
25.5.5 Microbial Interaction with the Electrode Surface 495
25.5.6 Choice of Anode Biocatalyst 495
25.5.7 Proton (H+) Mass Transfer 496
25.5.8 O2 Reduction by the Cathode 497
25.5.9 Electron Acceptors Other Than O2 497
25.6 MFC as a Wastewater Treatment System 497
25.7 Future Scope 498
25.8 Conclusion 498
References 499
Index 503
| Erscheint lt. Verlag | 1.12.2017 |
|---|---|
| Zusatzinfo | XIX, 506 p. 111 illus., 17 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Themenwelt | Naturwissenschaften ► Chemie |
| Naturwissenschaften ► Geowissenschaften | |
| Naturwissenschaften ► Physik / Astronomie | |
| Technik | |
| Schlagworte | biochemical engineering • Bioelectricity and microbial fuel cell • Bioelectrochemical system and energy • Coulombic efficiency and bioelectricity • Microbial fuel cell and energy • Wastewater treatment and microbial fuel cell • water industry and water technology • Water Quality and Water Pollution |
| ISBN-10 | 3-319-66793-9 / 3319667939 |
| ISBN-13 | 978-3-319-66793-5 / 9783319667935 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich