Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Cold-Spray Coatings (eBook)

Recent Trends and Future perspectives

Pasquale Cavaliere (Herausgeber)

eBook Download: PDF
2017 | 1st ed. 2018
570 Seiten
Springer International Publishing (Verlag)
978-3-319-67183-3 (ISBN)

Lese- und Medienproben

Cold-Spray Coatings -
Systemvoraussetzungen
287,83 inkl. MwSt
(CHF 279,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book combines the contributions of experts in the field to describe the behavior of various materials, micromechanisms involved during processing, and the optimization of cold-spray technology. It spans production, characterization, and applications including wear resistance, fatigue, life improvement, thermal barriers, crack repair, and biological applications. Cold spray is an innovative coating technology based on the kinetic energy gained by particles sprayed at very high pressures. While the technique was developed in the 1990s, industrial and scientific interest in this technology has grown vastly in the last ten years. Recently, many interesting applications have been associated with cold-sprayed coatings, including wear resistance, fatigue life improvement, thermal barriers, biological applications, and crack repair. However, many fundamental aspects require clarification and description. 



Prof. Pasquale Cavaliere, from the Department of Innovation Engineering of the University of Salento, received his PhD in 1999-2002 in Materials Engineering, at the University of Rome 'Tor Vergata'. He was the Marie Curie Fellow at Materials Science and Engineering Department, Massachusetts Institute of Technology, Cambridge MA. He is the author of over 250 papers in International Journals and Conferences, with an h-Index of 27 and over 2000 citations. With Springer International Publishing he Edited in 2016 the Book: Ironmaking and Steelmaking Processes, ISBN 978-3-319-39527-2.

Prof. Pasquale Cavaliere, from the Department of Innovation Engineering of the University of Salento, received his PhD in 1999-2002 in Materials Engineering, at the University of Rome “Tor Vergata”. He was the Marie Curie Fellow at Materials Science and Engineering Department, Massachusetts Institute of Technology, Cambridge MA. He is the author of over 250 papers in International Journals and Conferences, with an h-Index of 27 and over 2000 citations. With Springer International Publishing he Edited in 2016 the Book: Ironmaking and Steelmaking Processes, ISBN 978-3-319-39527-2.

Preface 5
Contents 7
Part I: Cold Spray Fundamentals 9
Chapter 1: Fundamentals of Cold Spray Processing: Evolution and Future Perspectives 10
1.1 Introduction 10
1.1.1 Motivations and Outline of the Chapter 10
1.1.2 Historical Background 11
1.2 General Process Overview 12
1.3 Advantages and Limitations of CS 13
1.4 Applications of CS 14
1.5 Bonding Mechanisms and Powder Consolidation in CS 14
1.5.1 Bonding Mechanisms 14
1.5.2 Cold Sprayability of Materials 17
1.6 Important Factors in CS 17
1.6.1 Deposition Efficiency 17
1.6.2 Critical Velocity 18
1.6.3 Gas Temperature and Pressure 20
1.7 Enhancements to the CS Process 21
1.8 Recent Developments in Cold Spray Technology 23
1.8.1 Shockwave-Induced Spraying 23
1.8.2 Nozzle Design 24
1.9 CS Process Advancements and Applications 26
References 27
Chapter 2: Cold Spray Applications 32
2.1 Introduction 32
2.2 Aerospace Applications 33
2.2.1 Cold Spray Implementation 33
2.2.2 Consideration of Cold Spray for Magnesium Repair 33
2.2.3 Replacement and Sustainment Costs 34
2.2.4 Cold Spray Repair for Magnesium Aerospace Parts 34
2.2.5 Selection Methodology for Cold Spray Aluminum Alloys 37
2.2.6 Technical Approach 37
2.2.7 Triple Lug Adhesion Test 40
2.2.8 Tensile Testing of Bulk CS Material 40
2.2.9 Microstructural Analysis 43
2.2.10 Specification Development 44
2.2.11 Transition of Cold Spray for Aerospace 45
2.2.12 Other Cold Spray Applications 45
2.2.13 B-1 FEB Panel Repair 46
2.2.14 Hydraulic Line Repair 50
2.2.15 AH-64 Apache Mast Support Repair 52
2.2.16 Navy Valve Actuator Repair 53
2.3 Joining Dissimilar Materials 56
2.3.1 ARL “Glueless” Bond Strength Test 57
2.3.2 ARL “Glueless” Bond Strength Test Results 58
2.3.3 Hardness Testing 60
2.3.4 Optical and Electron Microscopy 60
2.4 Discussion 60
2.5 Conclusions 62
References 62
Chapter 3: Coeval Cold Spray Additive Manufacturing Variances and Innovative Contributions 64
3.1 Introduction: Flexibility of Cold Spraying Today Towards a Larger Taxonomy 64
3.2 Historical Review of the Cold Spray Technology Up to the Generic Modern Method 68
3.3 A Concise Survey of Material Possibility for Cold Spraying Today 72
3.4 Overview of Technological Solutions Generated by the Generic Modern CGDS 74
3.5 Low-Pressure Cold Spray Deposition with New Possibilities and Benefits 78
3.6 Very-Low-Pressure Cold Spraying and Advanced Technological Solutions 81
3.7 Novel Hybrid Variant of CS Manufacturing for Submicron 3D Architecturation 83
3.8 Laser-Assisted Cold Spraying Method to Generate Positive Thermal Effect 87
3.9 Pulse Gas-Dynamic Spraying Providing High Kinematic and High-Temperature Deposition 92
3.10 Concluding Remarks on the Capabilities of the Cold Spray Technology Today 93
References 96
Chapter 4: Low-Pressure Cold Spray (LPCS) 102
4.1 Basics of Low-Pressure Cold Spray (LPCS) Technology 102
4.1.1 High-Pressure Cold Spraying (HPCS) Versus Low-­Pressure Cold Spraying (LPCS) 102
4.1.2 Bonding Mechanisms 107
4.1.3 Temperature Effects: LPCS Localization Processes 108
4.1.3.1 Experimental Procedure 109
4.1.3.2 Results and Discussion 110
Localization Versus Particle Temperature and Velocity 110
Numerical Simulation 112
4.1.4 Composite Coatings 116
4.2 LPCS Applications 119
4.2.1 Repair Applications of LPCS Technology 120
4.2.2 Corrosion Protection of Aluminium Alloys 124
4.2.3 Utilization of LPCS Intermetallic Thermal Barrier Coatings for Low Heat Rejection Diesel Engines 133
References 146
Chapter 5: Structure–Properties Relations in High-­Pressure Cold-Sprayed Deposits 150
5.1 Introduction 150
5.1.1 Overview of Cold Spray 150
5.1.2 Comparison of High-Pressure to Low-Pressure CS 151
5.1.3 Relationship Between Coating Microstructure and Mechanical Properties 152
5.2 Microstructure of CS Feedstock Powder and Deposition 153
5.2.1 Microstructure of Feedstock Powder 154
5.2.1.1 SEM Observations 154
5.2.1.2 In-Depth Characterization 155
5.2.2 Microstructure Characteristics of CS Deposits 156
5.2.2.1 General Features 156
5.2.2.2 Fine-Scale Microstructure 157
5.2.2.3 Formation Mechanisms of the UFG Structures 160
5.2.3 Effect of Post-CS Heat Treatment 162
5.3 Mechanical Properties of CS Deposits 166
5.3.1 Overview of Mechanical Properties Related to Deposit Quality 166
5.3.2 Local Mechanical Properties 166
5.3.2.1 Nanoindentation and Modulus 167
5.3.3 Bulk Mechanical Properties 168
5.3.3.1 Microhardness 168
5.3.3.2 Bond Strength 170
5.3.3.3 Tensile Strength and Ductility 173
5.3.3.4 Residual Stress 175
5.3.3.5 Fatigue Properties 177
5.3.3.6 Corrosion 178
5.3.4 Effect of Post-CS Heat Treatments on Mechanical Properties 181
5.3.4.1 Post-HT Hardness 182
5.3.4.2 Post-HT Bond Strength 183
5.3.4.3 Post-HT Tensile Strength and Ductility 184
5.3.4.4 Post-HT Conductivity 187
5.4 Summary and Conclusions 189
References 190
Part II: Future Perspectives 200
Chapter 6: Cold Spray Additive Manufacture and Component Restoration 201
6.1 Introduction 201
6.2 Cold Spray Additive Manufacturing Applications 203
6.2.1 Rotational Structure Fabrication 203
6.2.2 Near Net-shape Structure Fabrication 207
6.3 Cold Spray Restoration Applications 208
6.3.1 Aircraft Component Restoration 208
6.3.2 Aircraft Skin Restoration 211
6.3.3 Aircraft Blade Restoration 212
6.3.4 Other Component Restoration 213
6.4 Processing Parameters During Manufacturing 214
6.4.1 Introduction of Processing Parameters 214
6.4.2 Nozzle Moving Speed 215
6.4.3 Spray Distance 216
6.4.4 Spray Angle 216
6.4.5 Nozzle Scanning Step 217
6.4.6 Trajectory Definition 218
6.5 Robotic Control of Processing Parameters 219
6.5.1 Introduction of Robotic Control 219
6.5.2 Online Programming 220
6.5.3 Off-Line Programming 221
6.5.4 External Axis 223
6.6 Post-Machining and Finishing Processes 223
6.6.1 Post-Machining Process 223
6.6.2 Finishing Process 224
6.7 Conclusions and Future Perspectives 225
References 226
Chapter 7: Advances in Titanium on Aluminium Alloys Cold Spray Coatings 231
7.1 Introduction 231
7.2 Cold Spray of Titanium Powders on Aluminium Alloy Substrate 232
7.3 Post-deposition Laser Treatment Processing 238
7.3.1 Wear Analysis 248
7.4 Conclusions 252
References 253
Chapter 8: Characterization, Deposition Mechanisms, and Modeling of Metallic Glass Powders for Cold Spray 256
8.1 Considerations About Metallic Glasses 256
8.1.1 Glass Formation and Thermal Behavior of MGs 257
8.1.1.1 Concluding Remarks 260
8.2 Metallic Glass Feedstock Powders for Cold Spray 260
8.2.1 Characterization of Metallic Glass Feedstock Materials 261
8.2.2 Identifying Spray Parameters for Metallic Glass Feedstock 263
8.2.3 Deformation Mechanisms of Metallic Glass Feedstock Particles 264
8.2.3.1 Concluding Remarks 267
8.3 Deposition Mechanisms of Metallic Glasses by Cold Gas Spray 267
8.3.1 Finite Element Modeling for the Improvement of Metallic Glass Coatings 271
8.3.1.1 Concluding Remarks 274
References 275
Part III: Cold Spray Composites Coatings 278
Chapter 9: Cold-Sprayed Metal Matrix Composite Coatings 279
9.1 Introduction 279
9.1.1 Advantages of MMC 279
9.1.2 MMC Fabrication Methods 280
9.1.3 Cold Spraying of MMCs 281
9.2 Benefits of Cold Spraying with Ceramics 282
9.2.1 Deposition Efficiency 282
9.2.2 Improving Pull-Off Bond Strength 285
9.3 Particle Morphology and Spray Parameters 287
9.3.1 Particle Size 287
9.3.2 Particle Velocity 288
9.3.3 Particle Morphology 291
9.4 Composite Powders 292
9.4.1 Coated Ceramic Powders 292
9.4.2 Agglomerated Powders 295
9.5 Conclusion 297
References 297
Chapter 10: Metal Matrix Composite Coatings by Cold Spray 300
10.1 Introduction 300
10.2 Metal Matrix Composite Coatings 301
10.2.1 Al Matrix Composite Coatings 301
10.2.1.1 Hardness 301
10.2.1.2 Wear Resistance 302
10.2.1.3 Corrosion 304
10.2.1.4 Other Property 304
10.2.2 Cu Matrix Composite Coatings 305
10.2.3 Ni Matrix Composite Coatings 306
10.2.4 WC Matrix Composite Coatings 308
10.2.5 Ti, Mg, and Ag Matrix Composite Coatings 308
10.2.6 Intermetallic Matrix Composite Coatings 308
10.2.7 Hydroxyapatite and Polymer Matrix Composite Coatings 310
10.3 Key Issues 311
10.4 Conclusions and Outlook 315
References 316
Part IV: Wear Resistant Coatings 322
Chapter 11: Tribological Coatings Prepared by Cold Spray 323
11.1 Introduction 323
11.2 Tribology Concepts 325
11.3 Synthesis of Composite Coatings by Cold Spray 328
11.4 Tribology of Al MMCs Fabricated by Cold Spray 330
11.4.1 Trends for Tribological Performance of Cold-Sprayed Al-MMCs 331
11.4.2 Third Body Aspects for Cold-Sprayed Al-MMC Tribology 332
11.4.3 Nanoindentation of Third Bodies from Cold-Sprayed Al-MMC 335
11.5 Tribology of Cold-Sprayed Metal-Carbide MMCs 336
11.6 Self-lubricating Metal Matrix Composites (SLMMCs) 340
11.7 Summary and Future Directions 345
References 346
Part V: Corrosion Resistant Coatings 351
Chapter 12: Fundamentals of Corrosion Mechanisms in Cold Spray Coatings 352
12.1 Introduction 352
12.1.1 Cold Spray: The Process 353
12.1.2 Mechanism of Formation of Coating 353
12.1.3 Characteristics of Cold Spray Process 354
12.1.4 Applications of Cold Spray Process 356
12.2 Studies of Cold Spray Coatings for Corrosion Protection 357
12.3 Conclusions 368
References 369
Chapter 13: Corrosion Resistance of Cold-Sprayed Coatings 373
13.1 Introduction 373
13.2 Corrosion Generally 373
13.3 Anodic Protection by Cold-Sprayed Coatings 377
13.3.1 Cold-Sprayed Cu Coatings 377
13.3.2 Cold-Sprayed Ni and Ni Alloy Coatings 378
13.3.3 Cold-Sprayed Ti and Ti Alloy Coatings 380
13.3.4 Cold-Sprayed Ta Coatings 381
13.3.5 Cold-Sprayed Stainless Steel and Hard Metal Coatings 383
13.4 Cathodic Protection by Cold-Sprayed Coatings 385
13.5 Corrosion Resistance Improvements by Assisting Processes 387
13.6 Conclusions 388
References 389
Chapter 14: High Temperature Oxidation Performance of Cold Spray Coatings 393
14.1 Introduction 393
14.2 Preparation of TiAl3 Composite Coatings by Cold Spray 394
14.3 Characterization of TiAl3 Composite Coatings 396
14.3.1 Deposition of Pure Aluminum 396
14.3.2 Deposition of the Mixture of Al and Al2O3 400
14.3.3 Deposition of Al-Si Alloy 402
14.3.4 Deposition of Mixture of Ti and Al Powders 406
14.3.5 Deposition of Mixture of Al/Ti/Al2O3 410
14.3.6 Deposition of Ball-Milled Al and TiAl3 Powders 412
14.4 Conclusions 415
References 416
Part VI: Mechanical Properties 419
Chapter 15: Understanding Adhesion 420
15.1 Introduction 420
15.1.1 The Physics of Particle Impact 420
15.1.2 Critical Velocity 421
15.1.3 The Nature of Adhesion 422
15.1.3.1 Metallic Bonds 423
15.1.3.2 Mechanical Interlocking 423
15.1.3.3 Other Adhesion Mechanisms 425
15.2 The Influence of Cold Spray Parameters on Adhesion 425
15.2.1 Effect of Impact Conditions on Adhesion 426
15.2.1.1 Particle Velocity 426
15.2.1.2 Particle Temperature 426
15.2.1.3 Substrate Temperature 427
15.2.2 The Effect of CS Process Parameters on Impact Conditions 428
15.2.2.1 The Nature of the Propellant Gas 428
15.2.2.2 The Stagnation Temperature of the Propellant Gas 429
15.2.2.3 The Stagnation Pressure of the Propellant Gas 429
15.2.2.4 The Nozzle Geometry 430
15.2.2.5 The Nozzle Material 431
15.2.2.6 Particle Preheating 431
15.2.2.7 The Nozzle Traverse Velocity 431
15.2.2.8 The Nozzle Standoff Distance 432
15.3 Surface Preparation 432
15.3.1 Roughening Surface Preparations 432
15.3.1.1 Abrasive Blasting 433
15.3.1.2 Forced Pulsed Waterjet 433
15.3.2 Non-roughening Substrate Preparations 434
15.3.2.1 Laser Preparation 434
15.3.2.2 Chemical Cleaning 435
15.4 The Mechanism of Adhesion 436
15.4.1 Metallic Bonding 436
15.4.1.1 Oxide Removal 436
15.4.1.2 Melting 437
15.4.1.3 Intermetallics 438
15.4.1.4 Recrystallization 438
15.4.2 Mechanical Interlocking 439
15.4.2.1 Spray-Induced Mechanical Interlocking 439
15.4.2.2 Surface Preparation-Induced Mechanical Interlocking 440
15.4.3 Finite Element Modeling 441
15.4.3.1 Modeling of Particle/Substrate Interaction 441
15.4.3.2 Modeling of Mechanical Anchoring 443
15.5 Conclusion 445
References 445
Chapter 16: Residual Stresses in Cold Spray Coatings 450
16.1 Introduction 450
16.1.1 Stress in Cold-Sprayed Coatings 450
16.1.2 Techniques for Stress Measurements in Coatings 452
16.2 Analytical and Experimental Foundation of the Neutron Stress Measurements in Coatings 453
16.3 Experimental 461
16.3.1 Samples and Spraying Procedures 461
16.3.2 Coating Characterization Methods 463
16.4 Results and Discussion 465
16.4.1 Coatings Microstructure 465
16.4.2 Coating Densities 465
16.4.3 Coating Young’s Modulus 466
16.4.4 Texture Analysis 466
16.4.5 Residual Stress Analysis 468
16.4.6 EBSD Analyses 470
16.4.7 Modelling 473
16.5 Summary and Conclusions 476
References 478
Chapter 17: Porosity of Ni-Based and Ti-Based Cold-­Sprayed Coatings 480
17.1 Introduction 480
17.2 Porosity in Ni Alloys 484
17.3 Porosity in Ti Alloys 491
17.4 Porosity in MMCs 495
17.5 Conclusion 497
References 499
Chapter 18: Fatigue Properties and Crack Behavior of Cold Spray Coatings 501
18.1 Introduction 501
18.2 Experimental 503
18.3 Coating Behavior 506
18.3.1 Coating Process and Microstructure 506
18.3.2 Mechanical Properties 509
18.3.3 Fatigue 511
18.3.4 Crack Behavior 513
18.3.5 Fractography 524
18.4 Conclusions 526
References 527
Part VII: Biomedical Coatings 529
Chapter 19: Cold Spray Coatings for Biomedical Applications 530
19.1 Introduction 530
19.2 Biocoatings Via Cold Spray 533
19.2.1 Metallic Biocoatings 533
19.2.2 Ceramic-Based Biocoatings 537
19.2.2.1 HA Biocoatings 540
19.2.2.2 HA Composite Biocoatings 543
19.3 Clinical Performance 545
19.4 Antibacterial/Antimicrobial Coatings 545
19.5 Summary 548
References 549
Index 555

Erscheint lt. Verlag 8.11.2017
Zusatzinfo VIII, 570 p. 343 illus., 161 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Schlagworte Alloy coatings • biomaterials • cold spray microstructure • Cold spray process • mechanical properties • metal coatings • metal composites • severe plastic deformation • spray deposition • thermal spray process
ISBN-10 3-319-67183-9 / 3319671839
ISBN-13 978-3-319-67183-3 / 9783319671833
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 24,40