Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Smart Energy Control Systems for Sustainable Buildings (eBook)

eBook Download: PDF
2017 | 1st ed. 2017
XVIII, 268 Seiten
Springer International Publishing (Verlag)
9783319520766 (ISBN)

Lese- und Medienproben

Smart Energy Control Systems for Sustainable Buildings -
Systemvoraussetzungen
160,49 inkl. MwSt
(CHF 156,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
There is widespread interest in the way that smart energy control systems, such as assessment and monitoring techniques for low carbon, nearly-zero energy and net positive buildings can contribute to a Sustainable future, for current and future generations. 

There is a turning point on the horizon for the supply of energy from finite resources such as natural gas and oil become less reliable in economic terms and extraction become more challenging, and more unacceptable socially, such as adverse public reaction to 'fracking'. Thus, in 2016 these challenges are having a major influence on the design, optimisation, performance measurements, operation and preservation of: buildings, neighbourhoods, cities, regions, countries and continents. The source and nature of energy, the security of supply and the equity of distribution, the environmental impact of its supply and utilization, are all crucial matters to be addressed by suppliers, consumers, governments, industry, academia, and financial institutions.

This book entitled 'Smart Energy Control Systems for Sustainable Buildings' contains eleven chapters written by international experts based on enhanced conference papers presented at the Sustainability and Energy in Buildings International conference series.

This book will be of interest to University staff and students; and also industry practioners.

Foreword 6
Contents 8
Introduction 14
1 Zero-Energy Living Lab 20
Abstract 20
1.1 Introduction 21
1.2 The Climate Challenges 24
1.3 The Building 27
1.4 Simulation and Optimization of the Design Concept 29
1.4.1 Mathematical Optimization 30
1.4.2 Dynamic Building Performance Simulation 33
1.4.3 Simulation Outcome and Discussion 34
1.5 Experimental Set-up 39
1.6 Earth to Air Heat Exchanger 40
1.6.1 Location of the Earth-to-Air Heat Exchanger and Identification of the Boundary Conditions 40
1.6.2 Design of the EAHE 41
1.6.2.1 Selection of the Backfill Soil Material 42
1.6.2.2 Sizing of the EAHE 43
1.6.2.3 Selection of the Pipe Diameter and the Nominal Airflow of the Fan 46
1.6.3 Design of the Monitoring System of the Earth-to-Air Heat Exchanger 47
1.6.4 Installation of the Earth-to-Air Heat Exchanger 48
1.7 System Start-up and Early Outcomes 49
1.8 Conclusions 50
Acknowledgements 51
References 51
2 Assessment of the Green Roofs Thermal Dynamic Behavior for Increasing the Building Energy Efficiencies 55
Abstract 55
2.1 Introduction 57
2.2 Materials and Methods 58
2.3 Green Roof Modeling 61
2.4 Methodology 62
2.4.1 Building Simulations 62
2.4.1.1 Thermal Dynamic Behavior 63
2.4.1.2 Thermal Comfort 64
2.5 Pilot Study 64
2.5.1 Reference Building 64
2.6 Building Retrofits Scenario 66
2.6.1 Descriptions of the Green Roof 66
2.7 Energy Performance Simulations 67
2.7.1 Building Simulations 67
2.7.2 Energy Needs 69
2.7.3 Assessment of the Thermal Dynamic Behaviour 70
2.7.3.1 Assessment of the Thermal Dynamic Behaviour 71
2.7.4 Assessment of Thermal Comfort 72
2.8 Discussion 74
2.9 Conclusions 74
References 75
3 Understanding Opportunities and Barriers for Social Occupant Learning in Low Carbon Housing 78
Abstract 78
3.1 Introduction 79
3.2 Home Use Social Learning Conceptual Framework 80
3.3 Methods 84
3.3.1 Quantitative Monitoring 84
3.3.2 Qualitative Building and User Related Data 85
3.3.3 The Surveys 86
3.4 Understanding the Key Home Use Learning Challenges 87
3.5 Analysing Home Use Expectations, Prior Experiences and Skills 88
3.6 Provision of Individual Home Use Learning Support 90
3.7 Decision-Making, Skills and Understanding Related to Home Use 92
3.8 Correlation of Results for MVHR in Relation to Clarity of Use 93
3.9 Discussion of Barriers and Opportunities for Collective Learning 97
3.10 Conclusions 100
Acknowledgements 101
References 102
4 An Archetype Based Building Stock Aggregation Methodology Using a Remote Survey Technique 105
Abstract 105
4.1 Introduction and Background 106
4.2 Overview of Existing Studies Using Stock Modelling Methodologies 107
4.2.1 Various Modelling Techniques 109
4.3 Stock Modelling Method Used 111
4.3.1 Data Collection Methods 111
4.3.1.1 Classification 111
4.3.1.2 Geometrical 112
4.3.1.3 Thermal 115
4.4 Methodology for Archetype Development 115
4.5 Application of Stock Aggregation Method 117
4.5.1 Results for Geometrical and Thermal Characteristics 121
4.6 Archetypes Development 123
4.7 Results from Case Study 126
4.8 Discussion 129
4.9 Conclusion and Future Work 130
References 130
5 Renewable Homes—Feasibility Options for UK Traditional Buildings Through Green Deal 132
Abstract 132
5.1 Introduction 132
5.2 Green Deal 133
5.2.1 Insulation 136
5.2.2 Glazing 137
5.2.3 Ventilation 139
5.2.4 Micro-distributed Technologies 140
5.3 Proposed Packages Through Green Deal 143
5.4 Results 145
5.4.1 Economic Analysis 146
5.4.2 Carbon Savings 148
5.4.3 Cost and CO2 Savings of Recommended Green Deal Packages 149
5.5 Discussions and Conclusions 151
References 152
6 Analysing the Contribution of Internal Heat Gains When Evaluating the Thermal Performance of Buildings 154
Abstract 154
6.1 Background and Objectives 154
6.2 Methodological Approach 155
6.2.1 Structural Framework 155
6.2.2 Modelling Procedure 157
6.2.3 Norm-Based Modelling of Useful Energy Demand for Space Heating Purposes 159
6.2.4 Modelling Dynamic Internal Heat Gain Development 161
6.3 Case Study 162
6.3.1 Calibration Basis 162
6.3.2 Scenario Definition 163
6.3.3 Energy Policy Framework 164
6.3.4 Results 165
6.4 Conclusions 169
Appendix 169
References 172
7 Smart Home Appliance Control via Hand Gesture Recognition Using a Depth Camera 174
Abstract 174
7.1 Introduction 175
7.2 Hand Gesture-Based Interface System 177
7.3 Methodology 178
7.3.1 Hand Depth Silhouette Acquisition 178
7.3.2 Hand Parts Recognition 179
7.3.3 Hand Gesture Recognition 181
7.4 Experimental Results and Demonstrations 183
7.4.1 Results of Hand Parts Recognition 183
7.4.2 Results of Hand Pose Recognition 183
7.4.3 Graphic User Interfaces (GUIs) for Demonstrations 184
7.5 Conclusions 185
Acknowledgements 185
References 185
8 Neural Networks Applied to Short Term Load Forecasting: A Case Study 188
Abstract 188
8.1 Introduction 189
8.2 State of the Art 190
8.3 Methodology 192
8.3.1 Designing Artificial Neural Networks 192
8.3.2 ANN Energy Consumption Model 195
8.3.3 Daily Energy Consumption: Average and Maximum 198
8.3.4 Hourly Energy Consumption 198
8.4 Validation 199
8.4.1 Database 199
8.4.2 Selection of the Network Architecture 200
8.5 Results and Discussion 204
8.5.1 Daily Energy Consumption: Average and Maximum 205
8.5.2 Hourly Energy Demand 205
8.5.3 Results Obtained in Similar Studies 209
8.6 Conclusion 210
Acknowledgements 210
References 211
9 Development of a Holistic Method to Analyse the Consumption of Energy and Technical Services in Manufacturing Facilities 213
Abstract 213
9.1 Energy in Industry 213
9.1.1 Introduction 213
9.1.2 Sustainable Manufacturing 215
9.1.3 Energy Efficiency Potential 217
9.1.4 Energy Efficiency Results 218
9.2 Industrial Energy Classification 219
9.2.1 Production Versus Facilities 219
9.2.2 Significant Energy Users (SEUs) 220
9.2.3 Electric Motors 223
9.3 Production Centered Energy Management 224
9.3.1 Monitoring and Targeting 226
9.3.2 Energy Flows in Production Operations 226
9.3.3 Methodologies 227
9.4 Value Stream Mapping 228
9.4.1 Lean Energy Management 228
9.4.2 Mapping Methodology 231
9.5 Conclusion 233
Acknowledgements 235
References 235
10 Two-Stage Optimization for Building Energy Management 239
Abstract 239
10.1 Introduction 240
10.2 Building Energy Management 241
10.2.1 Problem Description 242
10.2.2 Two-Stage Optimization Framework 243
10.3 Optimization Approach 244
10.3.1 Overview 244
10.3.2 Medium Term Optimization 245
10.3.3 Short Term Optimization 245
10.3.4 Optimization Procedure 246
10.4 Case Study 247
10.4.1 Building Energy System 247
10.4.2 Implementation 249
10.5 Simulation Results 249
10.6 Conclusions 255
References 255
11 An Investigation of Indoor Air Quality in UK Passivhaus Dwellings 258
Abstract 258
11.1 Introduction 259
11.2 Background 260
11.3 Methodology 261
11.3.1 Indoor Air Quality Measurements 261
11.3.2 Structured Occupant Interviews 263
11.3.3 Occupant Diary and Building Survey 263
11.4 Results 263
11.4.1 Heating and Ventilation 263
11.4.2 Carbon Dioxide and Average Occupancy in Open Plan Living Area 265
11.4.3 Summer Bedroom Conditions 267
11.4.4 Living Room Relative Humidity and Temperature 268
11.4.5 Formaldehyde Levels in Open Plan Living Room and Kitchen 270
11.4.6 Volatile Organic Compounds (VOC’s) in House No. 1 272
11.4.7 Indoor Air Quality Perception 273
11.4.8 Thermal Comfort Perception 274
11.5 Discussion 275
11.6 Conclusions 278
Acknowledgements 279
References 279

Erscheint lt. Verlag 26.5.2017
Reihe/Serie Smart Innovation, Systems and Technologies
Smart Innovation, Systems and Technologies
Zusatzinfo XVIII, 268 p. 117 illus., 98 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Bauwesen
Schlagworte Building Habitants • Building Performance • Climate Change Mitigation • Ecological Buildings • energy efficiency • Energy systems • Intelligent Systems • Low Carbon Technology • Monitoring and Mitigating • SEB’14 • Smart Sustainable Energy Systems
ISBN-13 9783319520766 / 9783319520766
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Problem Solving with Python

von Rubin H. Landau; Manuel J. Páez …

eBook Download (2024)
Wiley-VCH GmbH (Verlag)
CHF 95,70

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 24,40