Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Sustainable and Green Electrochemical Science and Technology (eBook)

(Autor)

eBook Download: PDF
2017
John Wiley & Sons (Verlag)
9781118698082 (ISBN)

Lese- und Medienproben

Sustainable and Green Electrochemical Science and Technology - Keith Scott
Systemvoraussetzungen
134,99 inkl. MwSt
(CHF 129,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Sustainable and Green Electrochemical Science and Technology brings together the basic concepts of electrochemical science and engineering and shows how these are applied in an industrial context, emphasising the major role that electrochemistry plays within society and industry in providing cleaner, greener and more sustainable technologies. Electrochemistry has many applications for sustainability; it can be used to store energy, synthesise materials and chemicals, to generate power and to recycle valuable resources.

 

Coverage includes

  • Electrochemistry, Electrocatalysis and Thermodynamics
  • Electrochemical Cells, Materials and Reactors
  • Carbon Dioxide Reduction and Electro-Organic Synthesis
  • Hydrogen production and Water Electrolysis
  • Inorganic Synthesis
  • Electrochemical Energy Storage and Power Sources
  • Electrochemical processes for recycling and resource recovery
  • Fuel Cell Technologies

 

This book is targeted at both industrial and academic readers, providing a good technological reference base for electrochemistry. It will enable the reader to build on basic principles of electrochemistry, and takes these through to cell design for various and diverse applications.



KEITH SCOTT
School of Chemical Engineering and Advanced Materials, Newcastle University, UK


Sustainable and Green Electrochemical Science and Technology brings together the basic concepts of electrochemical science and engineering and shows how these are applied in an industrial context, emphasising the major role that electrochemistry plays within society and industry in providing cleaner, greener and more sustainable technologies. Electrochemistry has many applications for sustainability; it can be used to store energy, synthesise materials and chemicals, to generate power and to recycle valuable resources. Coverage includes Electrochemistry, Electrocatalysis and Thermodynamics Electrochemical Cells, Materials and Reactors Carbon Dioxide Reduction and Electro-Organic Synthesis Hydrogen production and Water Electrolysis Inorganic Synthesis Electrochemical Energy Storage and Power Sources Electrochemical processes for recycling and resource recovery Fuel Cell Technologies This book is targeted at both industrial and academic readers, providing a good technological reference base for electrochemistry. It will enable the reader to build on basic principles of electrochemistry, and takes these through to cell design for various and diverse applications.

KEITH SCOTT School of Chemical Engineering and Advanced Materials, Newcastle University, UK

Cover 1
Title Page 5
Copyright 6
Contents 7
Preface 15
Acknowledgement 17
Chapter 1 Introduction to Electrochemical Sustainable Processes 19
1.1 Introduction 19
1.2 Effluent Treatment and Recycling 21
1.3 Green Electrochemistry 21
1.4 Electrochemistry and Energy Sustainability 22
1.5 Hydrogen Economy and Fuel Cells 25
1.5.1 The Hydrogen Economy 25
1.5.1.1 Hydrogen Generation, Storage and Use 28
1.5.2 Fuel Cells 40
1.6 Conclusions 42
References 43
Chapter 2 Electrochemistry, Electrocatalysis and Thermodynamics 45
2.1 The Electrochemical Cell 45
2.1.1 Faraday's Law 47
2.2 Electrochemical Thermodynamics 47
2.2.1 Gibbs Free Energy 47
2.2.2 Free Energy and Equilibrium Constants 48
2.2.3 Free Energy and Cell Potentials 49
2.2.3.1 Cell Potential versus pH Diagrams 53
2.3 Types of Electrochemical Reactions 56
2.3.1 Electric Double Layer 57
2.3.2 Electrochemical Reaction 58
2.3.3 Electrochemical Kinetics 61
2.3.3.1 Activation Energy for Electron Transfer 62
2.3.4 A Model of Electrode Kinetics 63
2.3.4.1 Experimental Behaviour 65
2.3.4.2 The Generalized Butler-Volmer Equation 67
2.4 Mass Transport and Electrochemical Reactions 67
2.4.1 Electrode Kinetics and Mass Transport 69
2.4.2 Butler-Volmer Equations and Departure from Equilibrium Potentials 71
2.4.3 Multistep Reactions 72
2.4.4 The Role of Adsorption 74
2.4.5 The Hydrogen Electrode and Oxygen Electrode Reactions 76
2.4.5.1 Hydrogen Oxidation and Evolution 76
2.4.5.2 The Oxygen Electrode 78
2.4.6 Voltammetry and the Platinum Electrode 80
2.4.6.1 Cyclic Voltammetry 81
2.4.7 Rotating Disc Electrode 85
2.4.7.1 Koutecky-Levich Analysis 86
2.4.8 Rotating Ring Disc Electrode 88
2.5 Photoelectrochemistry 91
2.5.1 Semiconductors and Light Absorption 92
2.5.2 Electron Transfer at Semiconductor Electrodes 94
2.5.3 Current-Potential Relations 96
2.6 Electrochemical Impedance Spectroscopy 98
2.6.1 Polarization Resistance 100
2.6.2 Warburg Impedance 102
References 102
Chapter 3 Electrochemical Cells, Materials and Reactors 105
3.1 Electrochemical Reactors 105
3.1.1 Current Efficiency 105
3.1.2 Production Rates 106
3.1.3 Energy Requirements 107
3.1.3.1 Cell Voltage 108
3.1.4 Energy Requirements and Efficiency in Hydrogen Production 110
3.1.4.1 Thermodynamics of Steam Electrolysis 112
3.1.4.2 Efficiency of Water Splitting to Hydrogen 113
3.2 Fuel Cells 115
3.2.1 Fuel Cell Efficiency 115
3.2.2 Practical Efficiencies 116
3.2.3 Fuel Cell Voltage 116
3.2.4 Mass Transport and Concentration Effects 116
3.2.5 Fuel and Oxidant Crossover 117
3.2.6 Figures of Merit 118
3.3 Batteries 119
3.3.1 C-Rate 120
3.4 Capacitors 121
3.4.1 Asymmetric Supercapacitors 124
3.5 Electrochemical Cell Engineering 124
3.5.1 Cell Designs 124
3.5.1.1 Temperature Control 127
3.5.1.2 The Distribution of Power and Current 128
3.5.2 Three-Dimensional Electrodes 130
3.5.3 Cell Components and Materials 132
3.5.3.1 Electrode Materials 132
3.5.3.2 Electrodes 133
3.5.3.3 Cell Membranes 135
3.5.3.4 Ion-Exchange Membranes 136
3.5.3.5 Species Transport in Membranes and Diaphragms 139
3.5.3.6 The Transport Number 140
3.5.3.7 Transport Processes in Diaphragms 140
3.5.3.8 Membranes and the Transport of Ions 141
References 142
Chapter 4 Carbon Dioxide Reduction and Electro-Organic Synthesis 143
4.1 Electrochemical Reduction of Carbon Dioxide 143
4.1.1 Technological Applications 149
4.1.1.1 Commercial Outlook 151
4.1.2 High Temperature Carbon Dioxide Electrolysis 152
4.1.3 Carbon Capture 156
4.1.4 Photoelectrochemical Reduction of Carbon Dioxide 156
4.1.5 Biological Electrochemical Reduction Processes 159
4.1.5.1 Bacteria and Enzyme Photocathodes for Carbon Dioxide Reduction 160
4.2 Organic Synthesis 161
4.2.1 Electro-Organic Syntheses 164
4.2.2 Electrosynthesis of Adiponitrile 165
4.3 Green Electro-Organic Synthesis 169
4.3.1 Ionic Liquids 171
4.3.2 Paired Electro-Organic Synthesis 173
4.4 Conclusions 174
References 175
Chapter 5 Hydrogen Production and Water Electrolysis 177
5.1 Fossil Fuel Based Hydrogen Production 178
5.2 Hydrogen via Electrolysis 179
5.2.1 Alkaline Electrolysers 180
5.2.1.1 Electrolyser Types and Materials 182
5.2.1.2 Electrode Materials 184
5.2.2 Solid Polymer Electrolyte Water Electrolysis 188
5.2.2.1 The Membrane Electrolyte 190
5.2.3 Electrocatalysts 190
5.2.3.1 Hydrogen Evolution 190
5.2.3.2 Oxygen Evolution 190
5.2.3.3 Catalyst Preparation 192
5.2.4 Production Rates and Energy Requirements in Water Electrolysis 193
5.2.5 Alkaline Polymer Electrolytes 195
5.2.6 High-Temperature Electrolysis of Steam 196
5.2.7 Electrolysis Using Organic Fuels 199
5.2.7.1 Electrolysis of Alcohols 199
5.2.8 Electrolytic Oxygen Generation 201
5.2.8.1 Electrochemical Air Purification 201
5.3 Photoelectrolysis 202
5.3.1 Photocatalysts 204
5.3.1.1 Dye-Sensitized Solar Cells 206
5.3.2 Photocathodes and Tandem Cells 207
5.4 Thermal and Electrochemical Generation of Hydrogen from Water 209
5.4.1 Thermochemical Hydrogen Production 209
5.4.2 Electrolysis and Thermochemical Cycles 211
5.4.2.1 Calcium-Bromine Cycle 212
5.4.2.2 Sulfur-Hydrogen Cycle 213
5.4.2.3 Sulfur-Bromine Cycle 214
5.4.2.4 Photoelectrocatalytic Process 215
5.4.2.5 Low Temperature Thermochemical Cycle 216
5.5 Chemical Production of Hydrogen 218
5.6 Conclusions 218
References 219
Chapter 6 Inorganic Synthesis 221
6.1 Chemicals from the Electrolysis of Halides 221
6.1.1 The Reaction Chemistry for the Chlorine 221
6.1.2 Chlorine and Sodium Hydroxide Production: The Chlor-Alkali Industry 225
6.1.2.1 Membrane Cells 227
6.1.2.2 Diaphragm Cells 227
6.1.2.3 Mercury Cells 229
6.1.2.4 Oxygen Cathodes 229
6.1.3 Hydrochloric Acid Electrolysis 230
6.1.4 Fluorine 231
6.1.5 Hypochlorite and Chlorate 231
6.1.6 Perchlorate and Perchloric Acid 233
6.1.7 Bromate, Iodate and Periodate 234
6.2 Electrolytic Processes for Metal Processing 234
6.2.1 Electrowinning 234
6.2.1.1 Aqueous Electrolytes 235
6.2.2 Molten Salt Electrolytes 236
6.2.2.1 Aluminium Production 237
6.2.3 Ionic Liquid Electrolytes 238
6.3 Inorganic Compounds and Salts 238
6.3.1 Peroxidisulfate Electrosynthesis 239
6.3.2 Permanganate 240
6.4 Generation of Chemical Oxidants 241
6.4.1 Hydrogen Peroxide 242
6.4.1.1 Electrochemistry of Hydrogen Peroxide Synthesis 243
6.4.1.2 Commercial Development 244
6.4.2 Ozone 245
6.4.2.1 Ozone Production from Water Electrolysis 247
6.5 Conclusions 249
References 249
Chapter 7 Electrochemical Energy Storage and Power Sources 251
7.1 Batteries 251
7.1.1 Secondary Batteries 252
7.1.1.1 Ragone Plots 252
7.1.2 Types of Batteries 253
7.1.3 Lithium-Ion Batteries 256
7.1.4 Molten Salt Batteries 258
7.1.5 Metal-Air Batteries 260
7.1.5.1 Zinc-Air Battery 261
7.1.5.2 Lithium-Air Battery 263
7.1.5.3 Aprotic Solvent Rechargeable Li-Air Battery 264
7.1.5.4 Solid-State Li-Air Battery 269
7.1.5.5 Mixed Aqueous/Aprotic 269
7.1.5.6 Other Non-Aqueous Metal-Air Batteries 269
7.1.5.7 Sodium-Air Batteries 270
7.1.5.8 Other Battery Development 271
7.1.6 Redox Flow Batteries 271
7.1.6.1 Redox Battery Systems 273
7.1.6.2 All-Vanadium Redox Flow Cell 273
7.1.6.3 Vanadium-Chloride/Polyhalide Redox Flow Cell 275
7.1.6.4 Polysulfide-Bromide Fuel Cell 275
7.1.6.5 Vanadium-Cerium Redox Flow Cell 276
7.1.7 Carbon-Air Batteries 277
7.1.7.1 Direct Carbon-Air Fuel Cell Reactions 279
7.1.7.2 Direct Carbon Fuel Cell Technology Based on Metal Hydroxide Electrolyte 280
7.1.8 Borohydride Cells 281
7.1.8.1 Hydrogen Peroxide Oxidant 283
7.2 Supercapacitors 284
7.2.1 Electrolytes for Supercapacitors 286
7.2.2 Hybrid or Asymmeytric Supercapacitors 287
7.2.2.1 Gel Polymer Electrolytes 289
7.3 Biological Fuel Cells 289
7.3.1 Microbial Fuel Cells 290
7.3.1.1 Measuring Microbial Fuel Cell Performance 291
7.3.1.2 Performance of a Microbial Fuel Cell 293
7.3.1.3 Membranes for Microbial Fuel Cells 295
7.3.1.4 Applications of Microbial Fuel Cells 296
7.3.1.5 Treatment of Biodegradable Organic Matter 298
7.3.2 Enzymatic Fuel Cells 302
7.3.2.1 Mediated Electron-Transfer 303
7.3.2.2 Enzymes for Cathodic Reactions in Biological Fuel Cells 304
References 305
Chapter 8 Electrochemical Energy Systems and Power Sources: Fuel Cells 309
8.1 Introduction 309
8.2 Principle of Fuel Cell Operation 312
8.3 Fuel Cell Systems 314
8.3.1 Cell Stacking 314
8.3.2 Fuel Cell Balance of Plant 316
8.4 Polymer Electrolyte Membrane Fuel Cells 318
8.4.1 Polymer Electrolyte Membrane Fuel Cell structure 319
8.4.2 Gas Diffusion Layer 320
8.4.3 Water Management 322
8.4.4 Catalysts 324
8.4.5 Membrane Materials 326
8.4.6 Material Issues in Polymer Electrolyte Membrane Fuel Cells 329
8.4.7 Polymer Electrolyte Membrane Fuel Cell Performance 331
8.4.8 Higher Temperature Membranes 333
8.4.9 Membranes with Heteropolyacids 334
8.4.9.1 Pyrophosphates 335
8.4.9.2 Solid Acids 336
8.4.10 Alkaline Anion-Exchange Membranes 337
8.5 Alkaline Fuel Cells 338
8.5.1 Cell Components 341
8.5.1.1 Gas Diffusion Electrodes 341
8.5.1.2 Commercial Development 342
8.6 Medium and High Temperature Fuel Cells 344
8.6.1 Phosphoric Acid Fuel Cell 344
8.6.1.1 Cell Components 345
8.6.1.2 Bipolar Plates 346
8.6.1.3 Performance 346
8.6.2 Molten Carbonate Fuel Cell 347
8.6.2.1 Cell Components 349
8.6.2.2 Performance 349
8.6.2.3 Internal Reforming Molten Carbonate Fuel Cell 350
8.6.2.4 Degradation 352
8.6.2.5 Commercial Plants 353
8.6.3 Solid Oxide Fuel Cells 354
8.6.3.1 Cell Components 355
8.6.3.2 Cell and Stack Designs 358
8.6.3.3 Performance 360
8.6.4 Proton Conducting Ceramic Fuel Cells 361
8.7 Direct Alcohol Fuel Cells 362
8.7.1 Introduction 362
8.7.2 Anodic Oxidation of Methanol 365
8.7.3 Materials for the Direct Methanol Fuel Cell 368
8.7.4 Direct Methanol Fuel Cell Performance 370
8.7.4.1 Mixed-Reactant Direct Methanol Fuel Cell 370
8.7.5 Alternative Organic Fuels 371
8.7.6 Direct Ethanol Fuel Cells 372
8.7.7 Alternative Fuels for Fuel Cells 372
8.8 Unitized Fuel Cells 374
References 377
Chapter 9 Electrochemical Processes for Recycling and Resource Recovery 381
9.1 Electrochemical Membrane Separations 381
9.1.1 Electrodialysis 382
9.1.1.1 Applications 384
9.1.2 Electrohydrolysis for Acid and Base Recovery 384
9.1.3 Bipolar Membranes 386
9.1.3.1 Performance of Bipolar Electrodialysis 389
9.1.3.2 Applications of Bipolar Membrane Electrodialysis 394
9.1.3.3 Coupling Ion Exchange: Electrodeionization with Bipolar Membranes 396
9.1.4 Other Separation Processes 397
9.1.5 Electrochemical Membrane Processes for Gas Separation 397
9.2 Electrochemical Oxidations 398
9.3 Recovery and Recycling of Dissolved Metals 399
References 401
Index 403
EULA 411

Erscheint lt. Verlag 15.5.2017
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Technik Elektrotechnik / Energietechnik
Schlagworte batteries • Chemie • Chemistry • Electrochemical Engineering • Electrochemical Synthesis • Electrochemistry • Elektrochemie • Energie • Energy • Energy Storage • environmental protection • Fuel cells • Hydrogen, Batteries & Fuel Cells • Hydrogen Production • Industrial electrochemical technology • Nachhaltige u. Grüne Chemie • sustainability • Sustainable Chemistry & Green Chemistry • Wasserstoff, Batterien u. Brennstoffzellen
ISBN-13 9781118698082 / 9781118698082
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
CHF 53,65
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
CHF 58,55