Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Handbook of Machine and Computer Vision (eBook)

The Guide for Developers and Users

Alexander Hornberg (Herausgeber)

eBook Download: PDF
2017 | 2. Auflage
860 Seiten
Wiley (Verlag)
978-3-527-41343-0 (ISBN)

Lese- und Medienproben

Handbook of Machine and Computer Vision -
Systemvoraussetzungen
223,99 inkl. MwSt
(CHF 218,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The second edition of this accepted reference work has been updated to reflect the rapid developments in the field and now covers both 2D and 3D imaging.
Written by expert practitioners from leading companies operating in machine vision, this one-stop handbook guides readers through all aspects of image acquisition and image processing, including optics, electronics and software. The authors approach the subject in terms of industrial applications, elucidating such topics as illumination and camera calibration. Initial chapters concentrate on the latest hardware aspects, ranging from lenses and camera systems to camera-computer interfaces, with the software necessary discussed to an equal depth in later sections. These include digital image basics as well as image analysis and image processing. The book concludes with extended coverage of industrial applications in optics and electronics, backed by case studies and design strategies for the conception of complete machine vision systems. As a result, readers are not only able to understand the latest systems, but also to plan and evaluate this technology.
With more than 500 images and tables to illustrate relevant principles and steps.

The editor, Alexander Hornberg, worked as development and software engineer in industry. Since 1997 he has been working in the field of machine vision in an academic environment. He is Professor for Image Processing and Applied Optics at the University of Applied Sciences Esslingen, Germany.
All contributors to this work are written by practitioners from leading companies which operate in the field of computer vision.

The editor, Alexander Hornberg, worked as development and software engineer in industry. Since 1997 he has been working in the field of machine vision in an academic environment. He is Professor for Image Processing and Applied Optics at the University of Applied Sciences Esslingen, Germany. All contributors to this work are written by practitioners from leading companies which operate in the field of computer vision.

Cover 1
Title Page 5
Copyright 6
Contents 7
Preface Second Edition 25
Preface First Edition 27
List of Contributors 29
Chapter 1 Processing of Information in the Human Visual System 31
1.1 Preface 31
1.2 Design and Structure of the Eye 31
1.3 Optical Aberrations and Consequences for Visual Performance 33
1.4 Chromatic Aberration 40
1.5 Neural Adaptation to Monochromatic Aberrations 41
1.6 Optimizing Retinal Processing with Limited Cell Numbers, Space, and Energy 41
1.7 Adaptation to Different Light Levels 42
1.8 Rod and Cone Responses 44
1.9 Spiking and Coding 46
1.10 Temporal and Spatial Performance 47
1.11 ON/OFF Structure, Division of the Whole Illuminance Amplitude 48
1.12 Consequences of the Rod and Cone Diversity on Retinal Wiring 48
1.13 Motion Sensitivity in the Retina 49
1.14 Visual Information Processing in Higher Centers 50
1.14.1 Morphology 51
1.14.2 Functional Aspects - Receptive Field Structures and Cortical Modules 52
1.15 Effects of Attention 53
1.16 Color Vision, Color Constancy, and Color Contrast 53
1.17 Depth Perception 55
1.18 Adaptation in the Visual System to Color, Spatial, and Temporal Contrast 56
1.19 Conclusions 56
Acknowledgements 58
References 58
Chapter 2 Introduction to Building a Machine Vision Inspection 61
2.1 Preface 61
2.2 Specifying a Machine Vision System 62
2.2.1 Task and Benefit 62
2.2.2 Parts 63
2.2.3 Part Presentation 63
2.2.4 Performance Requirements 64
2.2.5 Information Interfaces 64
2.2.6 Installation Space 65
2.2.7 Environment 65
2.2.8 Checklist 65
2.3 Designing a Machine Vision System 66
2.3.1 Camera Type 66
2.3.2 Field of View 67
2.3.3 Resolution 68
2.3.4 Choice of Camera, Frame Grabber, and Hardware Platform 70
2.3.5 Lens Design 71
2.3.6 Choice of Illumination 74
2.3.7 Mechanical Design 76
2.3.8 Electrical Design 76
2.3.9 Software 76
2.4 Costs 78
2.5 Words on Project Realization 79
2.5.1 Development and Installation 79
2.5.2 Test Run and Acceptance Test 79
2.5.3 Training and Documentation 80
2.6 Examples 80
2.6.1 Diameter Inspection of Rivets 80
2.6.2 Tubing Inspection 85
Chapter 3 Lighting in Machine Vision 93
3.1 Introduction 93
3.1.1 Prologue 93
3.1.2 The Involvement of Lighting in the Complex Machine Vision Solution 93
3.2 Demands on Machine Vision lighting 97
3.3 Light used in Machine Vision 100
3.3.1 What is Light? Axioms of Light 100
3.3.2 Light and Light Perception 103
3.3.3 Light Sources for Machine Vision 106
3.3.4 The Light Sources in Comparison 116
3.3.5 Considerations for Light Sources: Lifetime, Aging, Drift 116
3.4 Interaction of Test Object and Light 121
3.4.1 Risk Factor Test Object 121
3.4.2 Light Color and Part Color 131
3.5 Basic Rules and Laws of Light Distribution 139
3.5.1 Basic Physical Quantities of Light 140
3.5.2 The Photometric Inverse Square Law 141
3.5.3 The Constancy of Luminance 143
3.5.4 What Light Arrives at the Sensor - Light Transmission Through the Lens 144
3.5.5 Light Distribution of Lighting Components 145
3.5.6 Contrast 148
3.5.7 Exposure 150
3.6 Light Filters 151
3.6.1 Characteristic Values of Light Filters 151
3.6.2 Influences of Light Filters on the Optical Path 153
3.6.3 Types of Light Filters 154
3.6.4 Anti-Reflective Coatings (AR) 156
3.6.5 Light Filters for Machine Vision 157
3.7 Lighting Techniques and Their Use 161
3.7.1 How to Find a Suitable Lighting? 161
3.7.2 Planning the Lighting Solution - Influence Factors 163
3.7.3 Lighting Systematics 165
3.7.4 The Lighting Techniques in Detail 170
3.7.5 Combined Lighting Techniques 192
3.8 Lighting Control 193
3.8.1 Reasons for Light Control - The Environmental Industrial Conditions 194
3.8.2 Electrical Control 194
3.8.3 Geometrical Control 203
3.8.4 Suppression of Ambient and Extraneous Light - Measures for a Stable Lighting 205
3.9 Lighting Perspectives for the Future 206
References 207
Chapter 4 Optical Systems in Machine Vision 209
4.1 A Look at the Foundations of Geometrical Optics 209
4.1.1 From Electrodynamics to Light Rays 209
4.1.2 Basic Laws of Geometrical Optics 211
4.2 Gaussian Optics 213
4.2.1 Reflection and Refraction at the Boundary between two Media 213
4.2.2 Linearizing the Law of Refraction - The Paraxial Approximation 215
4.2.3 Basic Optical Conventions 216
4.2.4 Cardinal Elements of a Lens in Gaussian Optics 219
4.2.5 Thin Lens Approximation 223
4.2.6 Beam-Converging and Beam-Diverging Lenses 223
4.2.7 Graphical Image Constructions 225
4.2.8 Imaging Equations and Their Related Coordinate Systems 225
4.2.9 Overlapping of Object and Image Space 230
4.2.10 Focal Length, Lateral Magnification, and the Field of View 230
4.2.11 Systems of Lenses 231
4.2.12 Consequences of the Finite Extension of Ray Pencils 235
4.2.13 Geometrical Depth of Field and Depth of Focus 244
4.2.14 Laws of Central Projection-Telecentric System 249
4.3 Wave Nature of Light 265
4.3.1 Introduction 265
4.3.2 Rayleigh-Sommerfeld Diffraction Integral 266
4.3.3 Further Approximations to the Huygens-Fresnel Principle 268
4.3.4 Impulse Response of an Aberration-Free Optical System 271
4.3.5 Intensity Distribution in the Neighborhood of the Geometrical Focus 274
4.3.6 Extension of the Point Spread Function in a Defocused Image Plane 278
4.3.7 Consequences for the Depth of Field Considerations 279
4.4 Information Theoretical Treatment of Image Transfer and Storage 282
4.4.1 Physical Systems as Linear Invariant Filters 282
4.4.2 Optical Transfer Function (OTF) and the Meaning of Spatial Frequency 290
4.4.3 Extension to the Two-Dimensional Case 291
4.4.4 Impulse Response and MTF for Semiconductor Imaging Devices 295
4.4.5 Transmission Chain 297
4.4.6 Aliasing Effect and the Space-Variant Nature of Aliasing 297
4.5 Criteria for Image Quality 307
4.5.1 Gaussian Data 307
4.5.2 Overview on Aberrations of the Third Order 307
4.5.3 Image Quality in the Space Domain: PSF, LSF, ESF, and Distortion 308
4.5.4 Image Quality in the Spatial Frequency Domain: MTF 311
4.5.5 Other Image Quality Parameters 313
4.5.6 Manufacturing Tolerances and Image Quality 314
4.6 Practical Aspects: How to Specify Optics According to the Application Requirements? 315
4.6.1 Example for the Calculation of an Imaging Constellation 317
References 319
Chapter 5 Camera Calibration 321
5.1 Introduction 321
5.2 Terminology 322
5.2.1 Camera, Camera System 322
5.2.2 Coordinate Systems 322
5.2.3 Interior Orientation and Calibration 323
5.2.4 Exterior and Relative Orientation 323
5.2.5 System Calibration 323
5.3 Physical Effects 323
5.3.1 Optical System 323
5.3.2 Camera and Sensor Stability 324
5.3.3 Signal Processing and Transfer 324
5.4 Mathematical Calibration Model 325
5.4.1 Central Projection 325
5.4.2 Camera Model 325
5.4.3 Focal Length and Principal Point 327
5.4.4 Distortion and Affinity 327
5.4.5 Radial Symmetrical Distortion 327
5.4.6 Radial Asymmetrical and Tangential Distortion 329
5.4.7 Affinity and Nonorthogonality 329
5.4.8 Variant Camera Parameters 329
5.4.9 Sensor Flatness 331
5.4.10 Other Parameters 331
5.5 Calibration and Orientation Techniques 332
5.5.1 In the Laboratory 332
5.5.2 Using Bundle Adjustment to Determine Camera Parameters 332
5.5.3 Other Techniques 337
5.6 Verification of Calibration Results 338
5.7 Applications 339
5.7.1 Applications with Simultaneous Calibration 339
5.7.2 Applications with Precalibrated Cameras 341
References 344
Chapter 6 Camera Systems in Machine Vision 347
6.1 Camera Technology 347
6.1.1 History in Brief 347
6.1.2 Machine Vision versus Closed Circuit TeleVision (CCTV) 347
6.2 Sensor Technologies 349
6.2.1 Spatial Differentiation: 1D and 2D 349
6.2.2 CCD Technology 350
6.2.3 CMOS Image Sensor 358
6.2.4 MATRIX VISION Available Cameras 368
6.3 Block Diagrams and Their Description 374
6.3.1 Block Diagram of SONY Progressive Scan Analog Camera 375
6.3.2 Block Diagram of Color Camera with Digital Image Processing 380
6.4 mvBlueCOUGAR-X Line of Cameras 384
6.4.1 Black and White Digital Camera mvBlueCOUGAR-X Camera Series 385
6.4.2 Color Camera mvBlueCOUGAR-X Family 386
6.4.3 Controlling Image Capture 401
6.4.4 Acquisition and Trigger Modes 401
6.4.5 Data Transmission 407
6.4.6 Pixel Data 410
6.4.7 Camera Connection 411
6.4.8 Operating the Camera 411
6.4.9 HiRose Jack Pin Assignment 412
6.4.10 Sensor Frame Rates and Bandwidth 412
6.5 Configuration of a GigE Vision Camera 414
6.6 Qualifying Cameras and Noise Measurement (Dr. Gert Ferrano MV) 416
6.6.1 Explanation of the Most Important Measurements 418
6.7 Camera Noise (by Henning Haider AVT, Updated by Author) 421
6.7.1 Photon Noise 421
6.7.2 Dark Current Noise 421
6.7.3 Fixed Pattern Noise (FPN) 422
6.7.4 Photo Response Non Uniformity (PRNU) 422
6.7.5 Reset Noise 422
6.7.6 1/f Noise (Amplifier Noise) 422
6.7.7 Quantization Noise 422
6.7.8 Noise Floor 423
6.7.9 Dynamic Range 423
6.7.10 Signal to Noise Ratio 423
6.7.11 Example 1: SONY IMX-174 Sensor (mvBlueFOX3-2024) 424
6.7.12 Example 2: CMOSIS CMV2000 (mvBlueCOUGAR-X104) 424
6.8 Useful Links and Literature 424
6.9 Digital Interfaces 425
Chapter 7 Smart Camera and Vision Systems Design 429
7.1 Introduction to Vision System Design 429
7.2 Definitions 430
7.3 Smart Cameras 433
7.3.1 Applications 433
7.3.2 Component Parts 434
7.3.3 Programming and Configuring 443
7.3.4 Environment 446
7.4 Vision Sensors 448
7.4.1 Applications 449
7.4.2 Component Parts 450
7.4.3 Programming and Configuring 450
7.4.4 Environment 451
7.5 Embedded Vision Systems 451
7.5.1 Applications 454
7.5.2 Component Parts 455
7.5.3 Programming and Configuring 455
7.5.4 Environment 455
7.6 Conclusion 455
References 456
Further Reading 459
Chapter 8 Camera Computer Interfaces 461
8.1 Overview 461
8.2 Camera Buses 462
8.2.1 Software Standards 463
8.2.2 Analog Camera Buses (Legacy) 465
8.2.3 Parallel Digital Camera Buses (Legacy) 469
8.2.4 IEEE 1394 (FireWire) (Legacy) 472
8.2.5 Camera Link 479
8.2.6 Camera Link HS 481
8.2.7 CoaXPress 482
8.2.8 USB (USB3 Vision) 482
8.2.9 Gigabit Ethernet (GigE Vision) 485
8.2.10 Future Standards Development 488
8.3 Choosing a Camera Bus 489
8.3.1 Bandwidth 489
8.3.2 Resolution 489
8.3.3 Frame Rate 490
8.3.4 Cables 490
8.3.5 Line Scan 490
8.3.6 Reliability 490
8.3.7 Summary of Camera Bus Specifications 491
8.3.8 Sample Use Cases 491
8.4 Computer Buses 493
8.4.1 ISA/EISA 493
8.4.2 PCI/CompactPCI/PXI 494
8.4.3 PCI-X 496
8.4.4 PCI Express/CompactPCI Express/PXI Express 497
8.4.5 Throughput 499
8.4.6 Prevalence and Lifetime 501
8.5 Choosing a Computer Bus 501
8.5.1 Determine Throughput Requirements 501
8.5.2 Applying the Throughput Requirements 503
8.6 Driver Software 503
8.6.1 Application Programming Interface 505
8.6.2 Supported Platforms 507
8.6.3 Performance 507
8.6.4 Utility Functions 508
8.6.5 Acquisition Mode 509
8.6.6 Image Representation 512
8.6.7 Bayer Color Encoding 515
8.6.8 Image Display 517
8.7 Features of a Machine Vision System 521
8.7.1 Image Reconstruction 521
8.7.2 Timing and Triggering 522
8.7.3 Memory Handling 524
8.7.4 Additional Features 526
8.8 Summary 531
References 532
Chapter 9 Machine Vision Algorithms 535
9.1 Fundamental Data Structures 535
9.1.1 Images 535
9.1.2 Regions 536
9.1.3 Subpixel-Precise Contours 538
9.2 Image Enhancement 539
9.2.1 Gray Value Transformations 539
9.2.2 Radiometric Calibration 542
9.2.3 Image Smoothing 547
9.2.4 Fourier Transform 558
9.3 Geometric Transformations 562
9.3.1 Affine Transformations 562
9.3.2 Projective Transformations 563
9.3.3 Image Transformations 564
9.3.4 Polar Transformations 568
9.4 Image Segmentation 570
9.4.1 Thresholding 570
9.4.2 Extraction of Connected Components 578
9.4.3 Subpixel-Precise Thresholding 580
9.5 Feature Extraction 582
9.5.1 Region Features 582
9.5.2 Gray Value Features 586
9.5.3 Contour Features 589
9.6 Morphology 590
9.6.1 Region Morphology 591
9.6.2 Gray Value Morphology 605
9.7 Edge Extraction 609
9.7.1 Definition of Edges in One and Two Dimensions 609
9.7.2 1D Edge Extraction 613
9.7.3 2D Edge Extraction 619
9.7.4 Accuracy of Edges 626
9.8 Segmentation and Fitting of Geometric Primitives 632
9.8.1 Fitting Lines 633
9.8.2 Fitting Circles 637
9.8.3 Fitting Ellipses 638
9.8.4 Segmentation of Contours into Lines, Circles, and Ellipses 639
9.9 Camera Calibration 643
9.9.1 Camera Models for Area Scan Cameras 644
9.9.2 Camera Model for Line Scan Cameras 648
9.9.3 Calibration Process 652
9.9.4 World Coordinates from Single Images 656
9.9.5 Accuracy of the Camera Parameters 659
9.10 Stereo Reconstruction 661
9.10.1 Stereo Geometry 662
9.10.2 Stereo Matching 669
9.11 Template Matching 673
9.11.1 Gray-Value-Based Template Matching 674
9.11.2 Matching Using Image Pyramids 679
9.11.3 Subpixel-Accurate Gray-Value-Based Matching 682
9.11.4 Template Matching with Rotations and Scalings 683
9.11.5 Robust Template Matching 684
9.12 Optical Character Recognition 702
9.12.1 Character Segmentation 702
9.12.2 Feature Extraction 704
9.12.3 Classification 706
References 720
Chapter 10 Machine Vision in Manufacturing 729
10.1 Introduction 729
10.1.1 The Machine Vision Market 729
10.2 Application Categories 731
10.2.1 Types of Tasks 731
10.2.2 Types of Production 733
10.2.3 Types of Evaluations 734
10.2.4 Value-Adding Machine Vision 735
10.3 System Categories 736
10.3.1 Common Types of Systems 737
10.3.2 Sensors 737
10.3.3 Vision Sensors 738
10.3.4 Compact Systems 739
10.3.5 Vision Controllers 740
10.3.6 PC-Based Systems 740
10.3.7 Excursion: Embedded Image Processing 743
10.3.8 Summary 744
10.4 Integration and Interfaces 745
10.4.1 Standardization 745
10.4.2 Interfaces 746
10.5 Mechanical Interfaces 746
10.5.1 Dimensions and Fixation 747
10.5.2 Working Distances 748
10.5.3 Position Tolerances 748
10.5.4 Forced Constraints 749
10.5.5 Additional Sensor Requirements 749
10.5.6 Additional Motion Requirements 750
10.5.7 Environmental Conditions 751
10.5.8 Reproducibility 752
10.5.9 Gauge Capability 753
10.6 Electrical Interfaces 755
10.6.1 Wiring and Movement 756
10.6.2 Power Supply 756
10.6.3 Internal Data Connections 757
10.6.4 External Data Connections 759
10.7 Information Interfaces 759
10.7.1 Interfaces and Standardization 760
10.7.2 Traceability 760
10.7.3 Types of Data and Data Transport 761
10.7.4 Control Signals 761
10.7.5 Result and Parameter Data 762
10.7.6 Mass Data 763
10.7.7 Digital I/O 763
10.7.8 Field Bus 763
10.7.9 Serial Interfaces 764
10.7.10 Network 764
10.7.11 Files 766
10.7.12 Time and Integrity Considerations 766
10.8 Temporal Interfaces 768
10.8.1 Discrete Motion Production 768
10.8.2 Continuous Motion Production 770
10.8.3 Line-Scan Processing 773
10.9 Human-Machine Interfaces 775
10.9.1 Interfaces for Engineering Vision Systems 776
10.9.2 Runtime Interface 777
10.9.3 Remote Maintenance 780
10.9.4 Offline Setup 781
10.10 3D Systems 783
10.10.1 Dimensionality and Representation 783
10.10.2 3D Data Acquisition 787
10.10.3 Applications 794
10.10.4 Conclusion 801
10.11 Industrial Case Studies 802
10.11.1 Glue Check Under UV Light 802
10.11.2 Completeness Check 804
10.11.3 Multiple Position and Completeness Check 806
10.11.4 Pin-Type Verification 809
10.11.5 Robot Guidance 811
10.11.6 Type and Result Data Management 814
10.11.7 Dimensional Check for Process Control 816
10.11.8 Ceramic Surface Check 818
10.12 Constraints and Conditions 819
10.12.1 Inspection Task Requirements 819
10.12.2 Circumstantial Requirements 820
10.12.3 Refinements 823
10.12.4 Limits and Prospects 824
References 826
Appendix 831
Index 835
EULA 863

Erscheint lt. Verlag 7.3.2017
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Physik / Astronomie
Technik
Schlagworte Aberrations • Adaptation • Algorithmen u. Datenstrukturen • Algorithms & Data Structures • Bildgebende Systeme u. Verfahren • Bildverarbeitung • Cell • Component Manufacturing • Computer Peripherals (printers,modems,scanners,etc.) • Computer-Ratgeber • Computer Science • computer vision • contributors • Different • Digital Cameras & Photography • Digitalkameras u. Digitalfotographie • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • End-User Computing • First • human visual • Imaging Systems & Technology • Informatik • Information • Komponentenfertigung • levels • light • Maschinelles Sehen • Monochromatic • Neural • Numbers • Optics & Photonics • Optik u. Photonik • Performance • Peripheriegeräte (Drucker, Scanner, Modems usw.) • Physics • Physik • Processing • Retinal processing • Robotics • Robotik • System • Visual • Visualisierung u. Computergraphik • Visualization & Computer Graphics • whole • xedition • xxv list
ISBN-10 3-527-41343-X / 352741343X
ISBN-13 978-3-527-41343-0 / 9783527413430
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Mit Herz, Kopf & Bot zu deinem Skillset der Zukunft

von Jenny Köppe; Michel Braun

eBook Download (2025)
Lehmanns Media (Verlag)
CHF 16,60