Advances in Computational Fluid-Structure Interaction and Flow Simulation (eBook)
XII, 500 Seiten
Springer International Publishing (Verlag)
978-3-319-40827-9 (ISBN)
Yuri Bazilevs is a Professor in the Department of Structural Engineering at the University of California, San Diego, USA. His research interests include: computational mechanics, fluid-structure interaction, isogeometric analysis, and multiscale/stabilized finite element methods.
Yuri Bazilevs is a Professor in the Department of Structural Engineering at the University of California, San Diego, USA. His research interests include: computational mechanics, fluid-structure interaction, isogeometric analysis, and multiscale/stabilized finite element methods. Kenji Takizawa is an Associate Professor in the Department of Modern Mechanical Engineering at Waseda University, Japan. His research interests include computer modeling and engineering applications.
Preface 7
Contents 8
Laudation at the AFSI 2014 Conference Banquet Celebrating Tayfun Tezduyar's 60th Birthday, Tokyo, Japan, March 2014 12
1 Laudation 12
Part I CFD: Methods and Applications 15
Numerical Comparison of the Particle Finite Element Method Against an Eulerian Formulation 16
1 Introduction 17
2 Error Analysis Applied to a Scalar Transport Equation 18
2.1 Eulerian Errors 20
2.2 Lagrangian Errors 21
2.2.1 General Analysis 21
2.2.2 Projection Errors 22
2.3 Validation Test 24
3 An Extension to Viscous Incompressible Fluid Flow Simulations 28
3.1 General Comments 29
3.2 Validation Test 29
4 Conclusions 31
References 32
An Implicit Gradient Meshfree Formulation for Convection-Dominated Problems 34
1 Introduction 34
2 Stabilization for Convection-Dominated Problems 36
2.1 Advection–Diffusion Equation 36
2.2 Stabilized Methods 37
3 Implicit Gradient RKPM for Stabilization of Convection-Dominated Problems 37
3.1 Reproducing Kernel Approximation 37
3.2 Implicit Gradient Reproducing Kernel Particle Method 38
3.3 Selection of the Stabilization Parameter 40
4 Numerical Examples 41
4.1 One-dimensional Model Problem 42
4.2 Advection Skew to the Discretization with Outflow Boundary 42
4.3 Thermal Boundary Layer Problem 44
5 Conclusion 44
References 45
Flow Analysis of a Wave-Energy Air Turbine with the SUPG/PSPG Method and DCDD 47
1 Introduction 47
2 Governing Equations 49
3 SUPG/PSPG Method 49
3.1 Stabilized Formulation 49
3.2 Stabilization Parameters 50
4 DCDD Stabilization 51
4.1 Comparison of the DCDD and LES Models 52
4.2 DCDD Validation 53
5 Computation 54
5.1 Problem Description 54
5.2 Results 56
6 Concluding Remarks 58
References 59
The Advection –Diffusion Analysis of Smoke Flows Around a Body 62
1 Introduction 62
2 The Objective Visualized Flow 63
2.1 The Experimental Apparatus 63
2.2 Image Processing Technique 64
3 The Advection–Diffusion Analysis 65
3.1 The Basic Equation and the Numerical Method 65
3.2 The Advection Velocity 65
3.3 The Boundary Condition of the Advection–Diffusion Analysis 66
4 The Computed Results 67
4.1 The Isotropic Diffusion Analysis 67
4.2 The Turbulent Diffusion Analysis 68
5 Concluding Remarks 69
References 71
Finite Element Computation of Buzz Instability in Supersonic Air Intakes 72
1 Introduction 72
2 The Governing Equations 74
2.1 The Quasi-Linear Form of Flow Equations 75
3 Finite Element Formulation 75
4 Flow in a Y-Intake 76
5 Flow in a Mixed Compression Intake 77
5.1 Little Buzz 79
5.2 Big Buzz 80
6 Conclusions 81
References 81
SUPG/PSPG Computational Analysis of Rain Erosion in Wind-Turbine Blades 84
1 Introduction 84
2 Mathematical Model 86
2.1 Fluid-Phase RANS Model for Incompressible Turbulent Flows 86
2.2 Dispersed-Phase Model 88
3 SUPG/PSPG Formulation of Fluid Mechanics Equations of Turbulent Flows 89
3.1 Stabilized Formulations 89
3.2 Stabilization Parameters 91
4 Discretized Particle Equations 92
4.1 Trajectory Calculation 92
4.2 Turbulence–Particle Interaction Parameters 93
5 Rain-Drop Erosion Model 94
6 Computations 95
6.1 Description of the Wind Turbine 95
6.2 Results 96
6.2.1 Comparison to BEM Computation 96
6.2.2 Erosion Patterns 96
7 Concluding Remarks 98
References 99
The Multi-Moment Finite Volume Solver for Incompressible Navier-Stokes Equations on Unstructured Grids 104
1 Introduction 104
2 Multi-Moment Reconstructions on Unstructured Grids 105
3 Numerical Formulation for Incompressible Navier-Stokes Equations 106
3.1 The Scheme for Advection-Diffusion Equation 107
3.2 The Scheme for Pressure Poisson Equation 109
3.3 Projection of the Velocity Field 110
4 Numerical Results 112
5 Summary 113
References 115
An Immersogeometric Method for the Simulation of Turbulent Flow Around Complex Geometries 117
1 Introduction 118
2 Variational Problem and Implementations 119
2.1 Variational Multiscale Formulation with Weakly Enforced Boundary Conditions 119
2.2 Implementation of the Tetrahedral Finite Cell Method 121
3 Benchmark Example: Flow Around a Sphere 122
3.1 Immersogeometric Results for Laminar Flow 123
3.2 Immersogeometric Results for Turbulent Flow 123
4 Industrial Scale Example: Turbulent Flow Arounda Tractor 124
4.1 Generating Immersogeometric and Boundary-Fitted Meshes 125
4.2 Comparison of Immersogeometric and Boundary-Fitted Results 126
5 Conclusions and Future Work 129
References 129
Part II CFD: Moving Boundaries and Interfaces 132
Numerical Simulation of the Behavior of a Rising Bubble by an Energy-Stable Lagrange-Galerkin Scheme 133
1 Introduction 133
2 An Energy-Stable Lagrange-Galerkin Scheme 134
3 Numerical Results 137
References 142
A Numerical Review of Multi-Fluid SPH Algorithms for High Density Ratios 143
1 Introduction 143
2 SPH Basics 144
2.1 Discretization 144
2.2 Equation of Motion 145
2.3 Continuity Equation 146
3 Multi-Fluid Implementations 147
3.1 Monaghan and Rafiee Formulation 147
3.2 Colagrossi and Landrini Formulation 148
3.3 Hu and Adams Formulation 148
4 Numerical Simulations 150
4.1 Rayleigh–Taylor Instability 150
4.2 Rising Bubble 151
5 Summary and Outlook 152
Appendix 153
References 153
Self-Propulsion of a Killifish from Impulsive Starts 155
1 Introduction 155
2 Basic Equations and Approaches for an Accelerated Fish 156
3 Acceleration Model of a Small Fish 158
3.1 Vortical Structure on Wake of a Small Fish 158
3.2 Estimation of a Small Fish Speed Re Dependence
4 Conclusion 160
References 161
New Directions in Space–Time Computational Methods 162
1 Introduction 162
2 ST Basis Functions 166
3 ST-VMS Method 167
4 STNMUM 168
4.1 Mesh Computation and Representation 168
4.2 Remeshing 169
5 ST-C Method 170
5.1 Least-Squares Projection for Full Temporal Domain 170
5.2 Successive-Projection Technique 171
6 ST-TC Method 173
6.1 TC 173
6.2 Master–Slave System 173
7 ST-SI Method 174
8 Examples 176
8.1 Aortic-Valve Model with Coronary Arteries 176
8.2 Thermo-Fluid Analysis of a Ground Vehicle and Its Tires 176
8.3 2D Model of Flow Past a Tire in Contact with the Road 178
9 Concluding Remarks 178
References 179
Part III CFD: Phase-Field Modeling 182
Interfacial Instability of a Non-magnetized Drop in Ferrofluids Subjected to an Azimuthal Field: A Diffuse-Interface Approach 183
1 Introduction 183
2 Physical Problem and Governing Equations 184
3 Numerical Results and Discussion 187
4 Concluding Remarks 193
References 193
Numerical Analysis of Backward Erosion of Soils by Solving the Darcy–Brinkman Equations 195
1 Introduction 195
2 Governing Equations 196
2.1 Water Flow Field 196
2.2 Boundary Tracking 197
3 Numerical Method 197
4 Numerical Result 199
5 Conclusions 202
References 203
A Diffuse Interface Model for Incompressible Two-Phase Flow with Large Density Ratios 204
1 Introduction 204
2 Governing Equations 206
3 Numerical Schemes 209
4 Numerical Results 211
4.1 Convergence Tests 211
4.2 Damped Oscillation of a Capillary Wave 212
5 Conclusions 214
References 215
Isogeometric Phase-Field Simulation of Boiling 217
1 Introduction 217
2 The Navier–Stokes–Korteweg Equations 218
3 The Fully Discrete Scheme 220
4 Boiling 222
4.1 Two-Dimensional Nucleate Boiling 223
4.2 Two-Dimensional Film Boiling 224
4.3 Three-Dimensional Boiling 225
5 Conclusion 226
References 227
Part IV Computer Science and HPC Aspects 229
How to Generate Effective Block Jacobi Preconditioners for Solving Large Sparse Linear Systems 230
1 Introduction 230
2 Background 231
3 Enhanced Block Jacobi Preconditioners 232
3.1 Load Balancing 232
3.2 Weighted Graph Partitioning Reordering 233
3.3 Perturbed Factorization of Diagonal Blocks 234
3.4 The Parallel Implementation of E-BJacobi 235
4 Numerical Experiments 235
4.1 Robustness 236
4.2 Parallel Scalability 238
5 Conclusion 240
References 243
Parallel Analysis System for Fluid–Structure Interaction with Free-Surfaces Using ADVENTURE_Solid and LexADV_EMPS 244
1 Introduction 244
2 Large-Scale Parallel FE Solver 246
3 Large-Scale Parallel MPS Solver 246
4 Parallel Analysis System for FSI with Free-Surfaces 247
4.1 Model of Wall Boundary Used in MPS Computations 247
4.2 Fluid–Structure Interaction Model for the MPS-FE Method Using the ERP Model 247
4.3 Coupler for Exchanging Physical Values Between Two Existing Solvers 249
5 Example of FSI Simulation 250
6 Conclusions 252
References 253
A Review on Fast Quasi-Newton and Accelerated Fixed-Point Iterations for Partitioned Fluid–Structure Interaction Simulation 255
1 Introduction 256
2 Quasi-Newton or Fixed-Point Acceleration Schemes 256
3 Manifold Mapping 260
4 Comparison of the Methods — Numerical Results 262
5 Conclusions 265
References 266
Rhino 3D to Abaqus: A T-Spline Based Isogeometric Analysis Software Framework 268
1 Introduction 268
2 Software Framework and Pipeline Overview 269
3 Geometry Generation and BVP Specification 270
4 T-Spline Data Structure 271
4.1 TSM Data Format 271
4.2 STSP/VTSP Data Format and Conversion 272
5 Volumetric T-Spline Construction 275
6 Abaqus IGA and Visualization 276
7 Numerical Results and Conclusion 276
References 278
A Multithreaded Recursive and Nonrecursive Parallel Sparse Direct Solver 279
1 Introduction 279
2 The Recursive Sparse DS Factorization 282
3 Numerical Results 283
4 Conclusions 287
References 287
Part V Mathematical Methods 289
Macroscopic First Order Models of Multicomponent Human Crowds with Behavioral Dynamics 290
1 Plan of the Paper 290
2 Mathematical Structures 292
3 Derivation of Models 293
4 Applications and Simulations 296
4.1 Computational Method 296
4.2 Numerical Results 297
5 Looking Ahead to Further Developments 300
References 301
Energy Inequalities and Outflow Boundary Conditions for the Navier–Stokes Equations 302
1 Introduction 302
2 Well-Posedness 306
3 Model Stokes Problem 307
4 Finite Element Approximation 309
References 311
Numerical Studies on the Stability of Mixed Finite Elements Over Anisotropic Meshes Arising from Immersed Boundary Stokes Problems 313
1 Introduction 314
2 An Anisotropic Local Remeshing Strategy 315
2.1 Geometry 315
2.2 Discrete Immersed Boundary and Local Remeshing 316
3 Model Problem: The Incompressible Stokes Problem 316
3.1 The Incompressible Stokes Problem 317
3.1.1 Continuous Weak Formulation 317
3.1.2 Discrete Formulation 317
3.2 The Inf-Sup Condition and Error Estimates 318
4 Numerical Tests 319
4.1 Smallest Generalized Eigenvalue Test Problems 319
4.2 Eigenvalue and Eigenvector Analysis 320
A.1 Spurious Mode Eigenvectors 322
References 323
Stabilized Lagrange–Galerkin Schemes of First- and Second-Order in Time for the Navier–Stokes Equations 325
1 Introduction 325
2 Stabilized LG Schemes of First- and Second-Order in Time 326
3 Convergence Results 329
4 Choice of uh1 for Scheme (S2) 330
5 Numerical Results 334
6 Conclusions 335
References 336
Part VI Biomedical Applications 338
On Three-Dimensional ALE Finite Element Model For Simulating Interstitial Medium Deformation in the Presence of a Moving Needle 339
1 Introduction 339
2 Methods 341
2.1 Flow Equations 341
2.2 Finite Element Model 342
2.2.1 Scaling and Setting for Numerical Simulations 342
2.2.2 ALE Implementation on Moving Meshes 343
2.2.3 Finite Element Discretization 344
3 Results 345
4 Conclusions 346
References 348
Time-Dependent Outflow Boundary Conditions for Blood Flow in the Arterial System 350
1 Introduction 351
2 A Variational Multi-Scale (VMS) Framework for Non-Newtonian Fluids 352
3 Outflow Boundary Conditions (Outflow BCs) 353
3.1 Constant Pressure BC 354
3.2 Constant Resistance BC 354
3.3 Impedance BC 355
3.4 Clinically Calibrated Time-Dependent Resistance BC 355
4 Numerical Results 356
4.1 Unidirectional Flow in a Rectangular Channel 356
4.2 Idealized Arterial Geometry 358
4.2.1 Idealized Arterial Tree Geometry 360
4.2.2 Reduced Artery Geometry with Constant Resistance Outflow BC 361
4.2.3 Reduced Artery Geometry with Impedance Outflow BC 362
4.2.4 Reduced Artery Geometry with Time-Dependent Resistance Outflow BC 363
5 Conclusions 364
References 367
A Geometrical-Characteristics Study in Patient-Specific FSI Analysis of Blood Flow in the Thoracic Aorta 369
1 Introduction 369
2 Computational Methods and Problem Setup 370
3 Results and Discussion 372
4 Concluding Remarks 373
References 374
Particle Method Simulation of Thrombus Formation in Fontan Route 377
1 Introduction 377
2 Methods 378
2.1 Particle Method for Fluid Analysis 378
2.2 Biomechanics Model of Stagnation Thrombus Formation 379
2.3 Hemodynamics Models of Fontan Route 380
3 Results and Discussion 381
3.1 Effects of Fontan Route Geometry 381
3.2 Effects of Venous Flow Velocity 381
4 Discussion and Conclusion 382
References 384
Computational Study of Aortic Hemodynamics: From Simplified to Patient-Specific Geometries 387
1 Introduction 388
2 Fluid Model and Numerical Method 388
3 Considered Geometries 389
4 Boundary Conditions 390
4.1 Inflow Conditions 390
4.2 Outflow Conditions 391
5 Numerical Tests 392
5.1 Curved Pipes 392
5.2 Patient-Specific Aortas 394
6 Conclusion 396
References 396
An Image-Based Computational Framework for Analyzing Disease Occurrence and Treatment Outcome in Patients with Peripheral Arterial Disease 398
1 Introduction 399
2 MRI Data Acquisition and Mesh Generation 399
3 Governing Equations and Solution Approach 401
4 Results and Discussion 402
5 Conclusions 406
References 407
Part VII Fluid–Structure Interaction 409
Modal Analysis of Liquid–Structure Interaction 410
1 Introduction 410
2 Boundary Value Equations in the Deformed Configuration 411
2.1 Fluid Boundary Value Problem 411
2.2 Structure Boundary Value Problem 412
2.3 Local Equations in the Tank Ullage Gas 412
3 Equilibrium Configuration for the Coupled System 413
4 Linearized Local Equations 413
4.1 Linearization of the Fluid Equations 414
4.2 Linearization of the Structural Equations 415
4.3 Linearization of the Gas Equation 417
5 Fluid–Structure Problem Solving 418
5.1 Potential Fluid Variational Formulation 418
5.2 Structure Variational Formulation 420
5.3 Finite Element Discretization 422
6 Applications 423
7 Conclusions and Perspectives 424
References 424
A Fluid–Structure Interaction Algorithm Using Radial Basis Function Interpolation Between Non-Conforming Interfaces 426
1 Introduction and Model Description 426
2 Space and Time Discretizations 428
2.1 Conforming Fluid–Structure Interface Meshes 429
2.2 Non-Conforming Fluid–Structure Interface Meshes 430
3 Numerical Solution 432
4 FSI in a Straight Flexible Cylinder 433
5 FSI in a Patient-Specific Femoropopliteal Bypass 435
References 436
Elasto-Capillarity Simulations Based on the Navier–Stokes–Cahn–Hilliard Equations 438
1 Introduction 438
2 Problem Statement 439
2.1 Navier–Stokes–Cahn–Hilliard Complex-Fluid Model 440
2.2 Hyperelastic Saint Venant–Kirchhoff Solid Model 441
2.3 Interface Conditions 442
3 Weak Formulation 442
3.1 ALE Formulation of NSCH Equations 443
3.2 Aggregated Fluid–Solid Interaction Problem 444
4 Numerical Experiments 445
5 Conclusion 447
References 448
Fluid–Structure Interaction Modeling and Isogeometric Analysis of a Hydraulic Arresting Gear at Full Scale 450
1 Introduction 450
2 Geometry Modeling and Meshing for the Arresting Gear FSI Analysis 451
3 Governing Equations and Numerical Methods 454
4 Simulations of the VT Arresting Gear Model 455
4.1 Mesh Convergence Study for the Fluid Mechanics Simulation 455
4.2 Ramp-Up Simulation 456
4.3 FSI Simulation 458
5 Conclusion 461
References 461
Finite-Element/Boundary-Element Coupling for Inflatables: Effective Contact Resolution 464
1 Introduction 464
2 Mathematical Model of an Inflatable Structure 465
2.1 Boundary Integral Formulation of the Fluid 465
2.2 Parametrization-Free Kirchhoff–Love Structure 467
2.3 Transmission Conditions and Full Problem 468
3 Approximation and Solution 469
3.1 Subdivision Surface Approximation Spaces 470
3.2 Boundary-Element Approximation of the Fluid 471
3.3 Partitioned Iterative Solution 471
4 Deflation of a Balloon 472
5 Conclusions 474
References 474
Recent Advances in Fluid–Structure Interaction Simulations of Wind Turbines 476
1 Introduction 476
2 Methods for Modeling and Simulations 477
2.1 Governing Equations at the Continuum Level 477
2.2 Special Techniques for Handling Nonmatching Interfaces 479
3 Numerical Examples 480
3.1 FSI Simulation of an Offshore Wind Turbine with Yawing 480
3.2 FSI Simulation of a Windspire VAWT 481
3.3 Effect of Atmospheric Boundary Layer 483
4 Conclusions 484
References 485
| Erscheint lt. Verlag | 4.10.2016 |
|---|---|
| Reihe/Serie | Modeling and Simulation in Science, Engineering and Technology | Modeling and Simulation in Science, Engineering and Technology |
| Zusatzinfo | XII, 500 p. 193 illus., 158 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Informatik |
| Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
| Naturwissenschaften ► Physik / Astronomie | |
| Technik ► Bauwesen | |
| Schlagworte | Finite Element Methods • fluid- and aerodynamics • fluid mechanics • Fluid-Structure Interaction • High-Performance Parallel Computing • Isogeometric methods • Tayfun Tezduyar |
| ISBN-10 | 3-319-40827-5 / 3319408275 |
| ISBN-13 | 978-3-319-40827-9 / 9783319408279 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich